Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Med Chem ; 67(3): 2083-2094, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38287228

RESUMEN

Colorectal cancer remains the second leading cause of cancer-related mortalities worldwide. While artemisinin (ART), a key active compound from the traditional Chinese medicinal herb Artemisia annua, has been recognized for its antiproliferative activity against colon cancer cells, its underlying molecular underpinnings remain elusive. Whereas promiscuity of heme-dependent alkylating of macromolecules, mainly proteins, has been seen pivotal as a universal and primary mode of action of ART in cancer cells, accumulating evidence suggests the existence of unique targets and mechanisms of actions contingent on cell or tissue specificities. Here, we employed photoaffinity probes to identify the specific targets responsible for ART's anti-colon cancer actions. Upon validation, microsomal prostaglandins synthase-2 emerged as a specific and reversible target of ART in HCT116 colorectal cancer cells, whose inhibition resulted in reduced cellular prostaglandin E2 biosynthesis and cell growth. Our discovery opens new opportunities for pharmacological treatment of colon cancer.


Asunto(s)
Artemisininas , Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Artemisininas/metabolismo , Ciclooxigenasa 2 , Neoplasias Colorrectales/tratamiento farmacológico , Prostaglandinas
2.
Altern Ther Health Med ; 29(8): 776-781, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37708552

RESUMEN

Objective: This study aimed to investigate the prevalence, molecular types, and virulence genes of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections (SSTIs) in the Shaoxing region. Methods: MRSA strains were collected from patients with SSTIs in Shaoxing People's Hospital from January 2019 to December 2019. We conducted SCCmec typing, Staphylococcus protein A (SPA) typing, multilocus sequence typing (MLST), and virulence gene analysis using whole-genome sequencing on all MRSA strains. Results: The detection rate of community-acquired MRSA (CA-MRSA) isolated from SSTI patients in our hospital was 33.3% (6/18). The primary SCCmec types of CA-MRSA strains were IV and V, with IVg(2B) and V(5C2&5) accounting for 16.7% each. Hospital-acquired MRSA (HA-MRSA) strains primarily exhibited SCCmec types IVa(2B) (25.0%), followed by II(2A) (16.7%), V(5C2) (16.7%), and V(5C2&5) (8.3%). SPA typing indicated that CA-MRSA strains causing SSTIs were predominantly t437 (14.3%), t034 (14.3%), t309 (14.3%), t4549 (14.3%), and t7637 (14.3%). The primary SPA type of HA-MRSA strains was t311 (16.7%). MLST typing revealed that the main sequence types (STs) of CA-MRSA strains causing SSTIs were ST22 (33.3%), followed by ST398, ST59, ST88, and ST630, each accounting for 16.7%. The principal STs of HA-MRSA strains were ST398 (16.7%), ST59 (16.7%), ST88 (16.7%), and ST5 (16.7%), followed by ST22, ST630, ST6, and ST188, each at 8.3%. The primary clones of CA-MRSA strains causing SSTIs were ST59-t437-IVg(2B) (16.7%) and ST630-t4549-V(5C2&5) (16.7%), while the primary clones of HA-MRSA strains were ST59-t437-IVa(2B), ST630-t4549-V(5C2&5), ST6-t304-IVa(2B), ST5-t311-II(2A), ST59-t172-IVa(2B), ST398-t571-V(5C2), ST398-t034-V(5C2), and ST5-t311-II(2A), each accounting for 8.3%. The detection rate of the lukSF-PV virulence gene was higher in CA-MRSA strains (50.0%) than in HA-MRSA strains (16.7%). Conclusions: The isolation rate of CA-MRSA strains causing SSTIs was high in Shaoxing People's Hospital, with ST59-t437-IVg(2B) and ST630-t4549-V(5C2&5) being the predominant clones. MRSA strains exhibited multiple virulence genes, with the lukSF-PV gene having a higher detection rate in CA-MRSA strains, signifying its importance as a virulence factor in CA-MRSA.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones de los Tejidos Blandos , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Virulencia/genética , Infecciones de los Tejidos Blandos/epidemiología , Tipificación de Secuencias Multilocus , Infecciones Estafilocócicas/epidemiología , Epidemiología Molecular , Pruebas de Sensibilidad Microbiana , Antibacterianos
3.
Phytomedicine ; 106: 154404, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36075182

RESUMEN

BACKGROUND: Metabolic hypertension (MH) is characterized by elevated blood pressure accompanied by metabolic abnormalities, with the gut-derived lipopolysaccharide/toll like receptor 4 (LPS/TLR4) pathway an important triggering mechanism. The conventional Chinese plant Polygonatum sibiricum Red. is traditionally used as a medicinal and edible food source. Currently, several studies have examined its anti-obesity and anti-diabetic actions, with potential roles for MH treatment; however, specific P. sibiricum Red. roles in MH and associated mechanisms remain unclear. OBJECTIVES: Our purpose was to identify the effects and mechanisms of P. sibiricum Red. superfine powder (PSP) in a MH rat model triggered by high sugar and high fat compounds in an excessive alcohol diet (ACHSFDs). METHODS: A MH rat model was induced by ACHSFDs, and PSP was administered daily at 0.5 and 1.0 g/kg doses, respectively. Firstly, the effects of PSP on MH were assessed using blood pressure, serum lipid, and lipid deposition assays in the liver. Changes in intestinal flora were detected by high-throughput 16S rRNA sequencing, while metabolite short-chain fatty acids (SCFAs) and LPS levels were quantified by gas chromatography (GC) and enzyme-linked immunosorbent assay (ELISA), respectively. Hematoxylin & eosin (H&E) staining and transmission electron microscopy (TEM) were performed to evaluate histopathological changes in the rat colon. d-lactic acid (d-LA) levels and tight junction proteins (TJPs) expression were also measured to assess intestinal barrier function. Also, aortic endothelial microstructures, serum endothelin 1 (ET-1), and nitric oxide (NO) levels were investigated to determine vascular endothelial function. Finally, the TLR4/MyD88 signaling pathway in the aorta and gut was evaluated by western blotting, immunohistochemistry (IHC), and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: Blood pressure and blood lipid metabolism disorders induced by ACHSFDs in MH rats were improved by PSP administration. Intestinal flora analyses revealed decreased SCFAs and LPS levels following PSP administration, which was accompanied by increased Streptococcus species levels and decreased Desulfobacter and Desulfovibrio species levels. PSP increased SCFAs levels, and the expression of SCFAs receptors GPCR41 and GPCR43 in the colon. Meanwhile, the expression of tight junction proteins (TJPs) such as Claudin-1, occludin were upregulated in the ileum and colon, while TLR4 and MyD88 were downregulated, thereby strengthening intestinal barrier integrity and reducing serum LPS levels. Additionally, PSP treatment improved vascular endothelial function by inhibiting the TLR4/MyD88 pathway in vessels, improving vascular endothelial cell shedding, and regulating the NO and ET-1 balance. CONCLUSIONS: We demonstrated the beneficial effects and potential mechanisms of PSP in our MH rat model. Based on gut microbiota structure modulation and intestinal barrier improvements, PSP inhibited LPS-induced vascular TLR4/MyD88 signaling activation to improve vascular endothelial function, which in turn reduced blood pressure. Our study provides valuable insights on PSP therapy for MH.


Asunto(s)
Hipertensión , Polygonatum , Animales , Claudina-1/metabolismo , Endotelina-1/metabolismo , Eosina Amarillenta-(YS) , Ácidos Grasos Volátiles , Hematoxilina , Hipertensión/tratamiento farmacológico , Ácido Láctico , Lipopolisacáridos/farmacología , Factor 88 de Diferenciación Mieloide/metabolismo , Óxido Nítrico/metabolismo , Ocludina/metabolismo , Polygonatum/química , Polvos , ARN Ribosómico 16S , Ratas , Azúcares , Receptor Toll-Like 4/metabolismo
4.
Food Funct ; 13(9): 4930-4940, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35403181

RESUMEN

Precipitation formation commonly occurs in the ageing step of fermented citrus vinegar. Hitherto, the chemical characteristics and biological properties of precipitates remain unveiled. This study focused on investigating the chemical profile, formation mechanism and biological repurposing of precipitates. Nine principal components, two flavonoid glycosides and their aglycones along with five polymethoxyflavones (PMFs), were identified from a methanol extract of precipitates. Using hydrolysis models, we demonstrated that insoluble aglycones were generated through the breakage of glycosidic bonds in flavonoid glycosides under acidic condition. Moreover, soluble bound-PMFs were destroyed by yeast-acid hybrid catalysis to release insoluble free-PMFs to form precipitates. A methanol extract of precipitates exhibited a potent anti-proliferative effect on MCF-7 cells (IC50 = 0.032 µg µL-1) via inhibiting tubulin polymerization. This study will be helpful for the food industry to aid optimizing citrus vinegar brewing and for reutilizing precipitates for functional foods and health products. Furthermore, it also provides a green strategy of PMFs enrichment from citrus using an enzyme-acid hybrid system.


Asunto(s)
Citrus , Flavonas , Ácido Acético , Citrus/química , Flavonas/química , Flavonoides/química , Glicósidos , Metanol , Extractos Vegetales/química
5.
Phytochemistry ; 136: 23-30, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28089246

RESUMEN

Lysine decarboxylation is the first biosynthetic step of Huperzine A (HupA). Six cDNAs encoding lysine decarboxylases (LDCs) were cloned from Huperzia serrata by degenerate PCR and rapid amplification of cDNA ends (RACE). One HsLDC isoform was functionally characterized as lysine decarboxylase. The HsLDC exhibited greatest catalytic efficiency (kcat/Km, 2.11 s-1 mM-1) toward L-lysine in vitro among all reported plant-LDCs. Moreover, transient expression of the HsLDC in tobacco leaves specifically increased cadaverine content from zero to 0.75 mg per gram of dry mass. Additionally, a convenient and reliable method used to detect the two catalytic products was developed. With the novel method, the enzymatic products of HsLDC and HsCAO, namely cadaverine and 5-aminopentanal, respectively, were detected simultaneously both in assay with purified enzymes and in transgenic tobacco leaves. This work not only provides direct evidence of the first two-step in biosynthetic pathway of HupA in Huperzia serrata and paves the way for further elucidation of the pathway, but also enables engineering heterologous production of HupA.


Asunto(s)
Alcaloides/metabolismo , Amina Oxidasa (conteniendo Cobre)/metabolismo , Carboxiliasas/metabolismo , Huperzia/enzimología , Lycopodium/química , Sesquiterpenos/metabolismo , Alcaloides/biosíntesis , Alcaloides/química , Cadaverina/análisis , Carboxiliasas/farmacocinética , ADN Complementario/metabolismo , Lisina/metabolismo , Redes y Vías Metabólicas , Estructura Molecular , Hojas de la Planta/química , Plantas Modificadas Genéticamente/metabolismo , Reacción en Cadena de la Polimerasa , Sesquiterpenos/análisis , Sesquiterpenos/química
6.
Mol Biosyst ; 13(1): 83-91, 2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-27819370

RESUMEN

Celastrol, isolated from the traditional Chinese medicinal herb Tripterygium wilfordii Hook. f. (Thunder God's Vine), has been used to treat cancer, chronic inflammatory, autoimmune and other human diseases. However, to date, the protein targets and the mechanism of action of celastrol have remained elusive. In this study, we find that celastrol can react with protein thiols in a unique covalent and reversible manner, while protein denaturing disrupts the interaction. Through a competitive chemoproteomics approach utilizing a cysteine-targeting activity-based probe, we report the proteome-wide quantitative profiling of cellular targets of celastrol in human cervical cancer HeLa cells. Representative targets are further validated via in vitro binding experiments and/or enzymatic activity assays. Bioinformatics analysis results suggest that celastrol exerts its numerous therapeutic effects through interaction with promiscuous proteins involved in various biological processes and cellular pathways.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Proteoma , Proteómica , Triterpenos/farmacología , Neoplasias del Cuello Uterino/metabolismo , Biomarcadores , Proliferación Celular/efectos de los fármacos , Biología Computacional/métodos , Femenino , Células HeLa , Humanos , Triterpenos Pentacíclicos , Unión Proteica , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteómica/métodos
7.
Kidney Int ; 76(11): 1137-41, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19776721

RESUMEN

Iron deficiency anemia is a common complication in end-stage renal disease (ESRD) and impairs the therapeutic efficacy of recombinant erythropoietin. Oral or parental iron supplements usually are effective in treating iron deficiency anemia. Some patients, however, respond poorly to iron supplements and are diagnosed as having iron-refractory iron deficiency anemia. The condition exacerbates ESRD but its underlying mechanism was unclear. Hepcidin is a central player in iron homeostasis. It downregulates the iron exporter ferroportin, thereby inhibiting iron absorption, release, and recycling. In ESRD, plasma hepcidin levels are elevated, which contributes to iron deficiency in patients. Matriptase-2, a liver transmembrane serine protease, has been found to have a major role in controlling hepcidin gene expression. In mice, defects in the Tmprss6 gene encoding matriptase-2 result in high hepcidin expression and cause severe microcytic anemia. Similarly, mutations in the human TMPRSS6 gene have been identified in patients with iron-refractory iron deficiency. Thus, matriptase-2 is critical for iron homeostasis and may have an important role in ESRD.


Asunto(s)
Anemia Ferropénica , Anemia Ferropénica/tratamiento farmacológico , Anemia Ferropénica/etiología , Anemia Ferropénica/metabolismo , Péptidos Catiónicos Antimicrobianos/fisiología , Hepcidinas , Humanos , Hierro/uso terapéutico , Fallo Renal Crónico/complicaciones , Insuficiencia del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA