Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 262(Pt 2): 130212, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38365142

RESUMEN

A novel electromagnetic heat extraction method was presented, whereby mandarin peels residue solution was located in a winding coil subjected to an oscillating magnetic field, and the pectin was extracted under appropriate conditions. Numerical relationships between applied magnetic field and induced electric field (IEF) in the extraction process were elaborated. The results showed that the induced current density, IEF and terminal temperature increased with increasing magnetic field. The maximum current density of 0.35 A/cm corresponds to the highest terminal temperature of 84.6 °C and IEF intensity of 26.6 V/cm. When magnetic field intensity was 1.39 T and the extraction time was 15 min, the maximum yield of pectin reached 9.16 %. In addition, all treatments impacted the ash content, protein content, water-holding capacity (WHC), and oil-holding capacity (OHC) of the obtained pectin. The pectin extracted by electromagnetic heat had the lowest DE value of 71.3 % with 126.55 kDa molecular weight, while the GalA content was at the highest level of 76.18 %. After different treatments, the composition of pectin monosaccharides changed, but there were slight differences in the composition of pectin polysaccharides. Moreover, the electromagnetic heat extracted pectin had light color and an obvious surface fragmentation of the peel residue.


Asunto(s)
Calor , Pectinas , Pectinas/química , Polisacáridos , Monosacáridos , Fenómenos Electromagnéticos
2.
BMC Plant Biol ; 21(1): 202, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33906598

RESUMEN

BACKGROUND: Lodging is one of the important factors causing maize yield. Plant height is an important factor in determining plant architecture in maize (Zea mays L.), which is closely related to lodging resistance under high planting density. Coronatine (COR), which is a phytotoxin and produced by the pathogen Pseudomonas syringae, is a functional and structural analogue of jasmonic acid (JA). RESULTS: In this study, we found COR, as a new plant growth regulator, could effectively reduce plant height and ear height of both hybrids (ZD958 and XY335) and inbred (B73) maize by inhibiting internode growth during elongation, thus improve maize lodging resistance. To study gene expression changes in internode after COR treatment, we collected spatio-temporal transcriptome of inbred B73 internode under normal condition and COR treatment, including the three different regions of internode (fixed, meristem and elongation regions) at three different developmental stages. The gene expression levels of the three regions at normal condition were described and then compared with that upon COR treatment. In total, 8605 COR-responsive genes (COR-RGs) were found, consist of 802 genes specifically expressed in internode. For these COR-RGs, 614, 870, 2123 of which showed expression changes in only fixed, meristem and elongation region, respectively. Both the number and function were significantly changed for COR-RGs identified in different regions, indicating genes with different functions were regulated at the three regions. Besides, we found more than 80% genes of gibberellin and jasmonic acid were changed under COR treatment. CONCLUSIONS: These data provide a gene expression profiling in different regions of internode development and molecular mechanism of COR affecting internode elongation. A putative schematic of the internode response to COR treatment is proposed which shows the basic process of COR affecting internode elongation. This research provides a useful resource for studying maize internode development and improves our understanding of the COR regulation mechanism based on plant height.


Asunto(s)
Aminoácidos/farmacología , Giberelinas/farmacología , Indenos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Pseudomonas syringae/química , Transcriptoma , Zea mays/genética , Ciclopentanos/farmacología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Oxilipinas/farmacología , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
3.
Food Chem ; 229: 57-65, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28372216

RESUMEN

The induced electric field assisted hydrochloric acid (IEF-HCl) hydrolysis of potato starch was investigated in a fluidic system. The impact of various reaction parameters on the hydrolysis rate, including reactor number (1-4), salt type (KCl, MgCl2, FeCl3), salt concentration (3-12%), temperature (40-55°C), and hydrolysis time (0-60h), were comprehensively assessed. Under optimal conditions, the maximum reducing sugar content in the hydrolysates was 10.59g/L. X-ray diffraction suggested that the crystallinity of IEF-HCl-modified starches increased with the intensification of hydrolysis but was lower than that of native starch. Scanning electron microscopy indicated that the surface and interior regions of starch granules were disrupted by the hydrolysis. The solubility of IEF-HCl-modified starches increased compared to native starch while their swelling power decreased, contributing to a decline in paste viscosity. These results suggest that IEF is a notable potential electrotechnology to conventional hydrolysis under mild conditions without any electrode touching the subject.


Asunto(s)
Hidrólisis , Solanum tuberosum/química , Almidón/química
4.
Carbohydr Polym ; 153: 535-541, 2016 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-27561526

RESUMEN

The effects of induced electric field (IEF) on the crystal structure and physicochemical properties of potato starch were investigated by subjecting identically treated control and electrically-modified samples to the same temperature history. Additionally, a method of combining IEF with heating for efficient modification of native polymer was also proposed. Results showed that the application of IEF at an electric voltage of 75V has a statistically significant effect on starch gelatinization and pasting properties, especially when combined with heating at 50°C. After treatment by the combination method for 96h, the gelatinization temperatures increased, which can be explained by the slight increase in the ratio of 1044/1015cm(-1) and relative crystallinity. Furthermore, IEF reduced granular swelling and therefore contributed to decreasing the peak, breakdown, and setback viscosity of potato starch. This study explores the potential of IEF as innovative technology for starch modification.


Asunto(s)
Solanum tuberosum/química , Almidón/química , Cristalización , Electricidad , Calor , Viscosidad , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA