Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155279, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581801

RESUMEN

BACKGROUND: Osteoarthritis (OA) is characterized by degeneration of articular cartilage, leading to joint pain and dysfunction. Gubi Zhitong formula (GBZTF), a traditional Chinese medicine formula, has been used in the clinical treatment of OA for decades, demonstrating definite efficacy. However, its mechanism of action remains unclear, hindering its further application. METHODS: The ingredients of GBZTF were analyzed and performed with liquid chromatography-mass spectrometry (LC-MS). 6 weeks old SD rats were underwent running exercise (25 m/min, 80 min, 0°) to construct OA model with cartilage wear and tear. It was estimated by Micro-CT, Gait Analysis, Histological Stain. RNA-seq technology was performed with OA Rats' cartilage, and primary chondrocytes induced by IL-1ß (mimics OA chondrocytes) were utilized to evaluated and investigated the mechanism of how GBZTF protected OA cartilage from being damaged with some functional experiments. RESULTS: A total of 1006 compounds were identified under positive and negative ion modes by LC-MS. Then, we assessed the function of GBZTF through in vitro and vivo. It was found GBZTF could significantly up-regulate OA rats' limb coordination and weight-bearing capacity, and reduce the surface and sub-chondral bone erosions of OA joints, and protect cartilage from being destroyed by inflammatory factors (iNOS, IL-6, IL-1ß, TNF- α, MMP13, ADAMTS5), and promote OA chondrocytes proliferation and increase the S phage of cell cycle. In terms of mechanism, RNA-seq analysis of cartilage tissues revealed 1,778 and 3,824 differentially expressed genes (DEGs) in model vs control group and GBZTF vs model group, respectively. The mitophagy pathway was most significantly enriched in these DEGs. Further results of subunits of OA chondrocytes confirmed that GBZTF could alleviate OA-associated inflammation and cartilage damage through modulation BCL2 interacting protein 3-like (BNIP3L)-mediated mitophagy. CONCLUSION: The therapeutic effectiveness of GBZTF on OA were first time verified in vivo and vitro through functional experiments and RNA-seq, which provides convincing evidence to support the molecular mechanisms of GBZTF as a promising therapeutic decoction for OA.


Asunto(s)
Condrocitos , Medicamentos Herbarios Chinos , Mitofagia , Osteoartritis , Ratas Sprague-Dawley , Animales , Osteoartritis/tratamiento farmacológico , Condrocitos/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Ratas , Mitofagia/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Proteínas de la Membrana/metabolismo , Cartílago Articular/efectos de los fármacos , Proteínas Mitocondriales/metabolismo
2.
Phytomedicine ; 113: 154742, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36893673

RESUMEN

BACKGROUND: Osteoarthritis (OA) is an inflammatory response in chondrocytes, causing extracellular matrix (ECM) degradation and cartilage destruction, affecting millions of people worldwide. Chinese herbal formulae BuShen JianGu Fang (BSJGF) has been clinically applied for treating OA-related syndromes, but the underlying mechanism still unclear. METHODS: The components of BSJGF were analyzed by liquid chromatography-mass spectrometry (LC-MS). To make a traumatic OA model, the anterior cruciate ligament of 6-8-week-old male SD rats were cut and then the 0.4 mm metal was used to destroy the knee joint cartilage. OA severity was assessed by histological and Micro-CT. Mouse primary chondrocytes were utilized to investigate the mechanism of BSJGF alleviate osteoarthritis, which was examined by RNA-seq technology combined with a series of functional experiments. RESULTS: A total 619 components were identified by LC-MS. In vivo, BSJGF treatment result in a higher articular cartilage tissue area compared to IL-1ß group. Treatment also significantly increased Tb.Th, BV/TV and BMD of subchondral bone (SCB), which implied a protective effect on maintaining the stabilization of SCB microstructure. In vitro results indicated BSJGF promoted chondrocyte proliferation, increased the expression level of cartilage-specific genes (Sox9, Col2a1, Acan) and synthesized acidic polysaccharide, while inhibiting the release of catabolic enzymes and production of reactive oxygen species (ROS) induced by IL-1ß. Transcriptome analysis showed that there were 1471 and 4904 differential genes between IL-1ß group and blank group, BSJGF group and IL-1ß group, respectively, including matrix synthesis related genes (Col2a1, H19, Acan etc.), inflammation related genes (Comp, Pcsk6, Fgfr3 etc.) and oxidative stress related genes (Gm26917, Bcat1, Sod1 etc.). Furthermore, KEGG analysis and validation results showed that BSJGF reduces OA-mediated inflammation and cartilage damaged due to modulation of NF-κB/Sox9 signaling axis. CONCLUSION: The innovation of the present study was the elucidation of the alleviating cartilage degradation effect of BSJGF in vivo and in vitro and discovery of its mechanism through RNA-seq combined with function experiments, which provides a biological rationale for the clinical application of BSJGF for OA treatment.


Asunto(s)
Cartílago Articular , Osteoartritis , Masculino , Ratas , Animales , Ratones , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Osteoartritis/metabolismo , Inflamación/tratamiento farmacológico , Interleucina-1beta/metabolismo
3.
J Ethnopharmacol ; 305: 116087, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36584918

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Inadequate trophoblasts migration and invasion is considered as an initial event resulting in preeclampsia, which is closely related to oxidative stress. Berberine hydrochloride (BBR), extracted from the traditional medicinal plant Coptis chinensis Franch., exerts a diversity of pharmacological effects, and the crude drug has been widely taken by most Chinese women to treat nausea and vomit during pregnancy. But there is no research regarding its effects on trophoblast cell function. AIM OF THE STUDY: This study aimed to investigate the effect of BBR on human-trophoblast-derived cell line (HTR-8/SVneo) migration ability and its mechanism. MATERIALS AND METHODS: Cell viability was detected by CCK-8 assay. The effect of BBR on cells migration function was examined by scratch wound healing assay and transwell migration assay. Intracellular nitric oxide (NO), superoxide (O2-) and peroxynitrite (ONOO-) levels were measured by flow cytometry. The expression levels of inducible NO synthase (iNOS), eNOS, p-eNOS, MnSOD, CuZnSOD, Rac1, NOX1, TLR4, nuclear factor-κB (NF-κB), p-NFκB, pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) in cells were analyzed by Western blotting. Uric acid sodium salt (UA), the scavenger of ONOO-, PEG-SOD (a specific superoxide scavenger), L-NAME (a NOS inhibitor) and antioxidants (Vit E and DFO) were further used to characterize the pathway of BBR action. RESULTS: 5 µM BBR decreased both the migration distance and the number of migrated cells without affecting cells viability in HTR-8/SVneo cells after 24 h treatment. BBR could increase the level of NO in HTR-8/SVneo cells, and the over-production of NO might be attributable to iNOS, but not eNOS. BBR could increase intracellular O2- levels, and the over-production of O2- is closely related with Rac1 in HTR-8/SVneo cells. The excessive production of NO and O2- further react to form ONOO-, and the increased ONOO- level induced by BBR was blunted by UA. Moreover, UA improved the impaired migration function caused by BBR in HTR-8/SVneo cells. The depressed migration function stimulated by BBR in HTR-8/SVneo cells was diminished by PEG-SOD and L-NAME. Furthermore, BBR increased the expression of IL-6 in HTR-8/SVneo cells, and antioxidants (Vit E and DFO) could decrease the expression of IL-6 and iNOS induced by BBR. CONCLUSIONS: BBR inhibits the cell migration ability through increasing inducible NO synthase and peroxynitrite in HTR-8/SVneo cells, indicating that BBR and traditional Chinese medicines containing a high proportion of BBR should be used with caution in pregnant women.


Asunto(s)
Berberina , Femenino , Humanos , Embarazo , Berberina/farmacología , Movimiento Celular , Interleucina-6 , FN-kappa B/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa , Ácido Peroxinitroso/farmacología , Superóxidos , Óxido Nítrico Sintasa de Tipo II
4.
J Orthop Surg Res ; 17(1): 468, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307889

RESUMEN

BACKGROUND: Deer antler is a traditional Chinese medicine with the function of tonifying kidney and strengthening bone, which is often used to treat orthopedic diseases. METHODS: Eight-week-old C57BL/6 mice were used as the fixation model of open tibial fracture with intramedullary nail. The mice were treated with deer antler extract (DAE) or PBS by oral gavage once daily. The tibial fracture samples were collected and performed to the tissue analysis, including X-ray, micro-CT, histology, qRT-PCR, immunohistochemistry. MC3T3-E1 cells were used to detect the effect of deer antler extract on ability of cell proliferation and migration by CCK-8 assay and cell scratch test. RESULTS: Imaging and micro-CT showed that DAE could promote the healing of tibial fracture in mice, and histological analysis showed that DAE could promote the transformation of cartilage callus to bone callus in fracture area. The results of qRT-PCR and immunohistochemistry showed that DAE could promote intrachondral ossification in fracture zone and the mechanism of promoting fracture healing may be related to the activation of BMP-2/SMAD4 signaling pathway. In the cytological experiment of DAE, it can be found that DAE promoted the proliferation of MC3T3-E1 cells and the migration of MC3T3-E1 cells at a certain concentration, which is also related to the promotion of fracture healing by DAE. CONCLUSION: DAE can promote fracture healing by activating BMP-2/SMAD4 signaling pathway. DAE has the potential to be used in clinic as an important means of promoting fracture healing.


Asunto(s)
Cuernos de Venado , Ciervos , Fracturas de la Tibia , Ratones , Animales , Curación de Fractura , Fracturas de la Tibia/tratamiento farmacológico , Tibia , Ratones Endogámicos C57BL , Callo Óseo , Transducción de Señal
5.
J Orthop Surg Res ; 16(1): 8, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407721

RESUMEN

BACKGROUND: Deer antler is considered as a precious traditional Chinese medicinal material and has been widely used to reinforce kidney's yang, nourish essence, and strengthen bone function. The most prominent bioactive components in deer antler are water-soluble proteins that play potential roles in bone formation and repair. The aim of this study was to explore the molecular control and therapeutic targets of deer antler extract (DAE) on articular cartilage. METHODS: DAE was prepared as previously described. All rats were randomly divided into Blank group and DAE group (10 rats per group) after 7-day adaptive feeding. The rats in DAE group were orally administrated with DAE at a dose of 0.2 g/kg per day for 3 weeks, and the rats in Blank group were fed with drinking water. Total RNA was isolated from the articular cartilage of knee joints. RNA sequencing (RNA-seq) experiment combined with quantitative real-time polymerase chain reaction (qRT-PCR) verification assay was carried out to explore the molecular control and therapeutic targets of DAE on articular cartilage. RESULTS: We demonstrated that DAE significantly increased the expression levels of functional genes involved in cartilage formation, growth, and repair and decreased the expression levels of susceptibility genes involved in the pathophysiology of osteoarthritis. CONCLUSIONS: DAE might serve as a candidate supplement for maintaining cartilage homeostasis and preventing cartilage degeneration and inflammation. These effects were possibly achieved by accelerating the expression of functional genes involved in chondrocyte commitment, survival, proliferation, and differentiation and suppressing the expression of susceptibility genes involved in the pathophysiology of osteoarthritis. Thus, our findings will contribute towards deepening the knowledge about the molecular control and therapeutic targets of DAE on the treatment of cartilage-related diseases.


Asunto(s)
Cuernos de Venado/química , Cartílago Articular/metabolismo , Cartílago Articular/fisiología , Ciervos , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Extractos de Tejidos/administración & dosificación , Extractos de Tejidos/farmacología , Administración Oral , Animales , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Predisposición Genética a la Enfermedad/genética , Ácido Hialurónico/genética , Ácido Hialurónico/metabolismo , Masculino , Medicina Tradicional China , Terapia Molecular Dirigida , Osteoartritis/genética , Proteoglicanos/genética , Proteoglicanos/metabolismo , ARN/genética , ARN/aislamiento & purificación , Ratas Sprague-Dawley , Proteína de Unión al Calcio S100A4/genética , Proteína de Unión al Calcio S100A4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA