Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 621(7978): 336-343, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37674081

RESUMEN

Birds are descended from non-avialan theropod dinosaurs of the Late Jurassic period, but the earliest phase of this evolutionary process remains unclear owing to the exceedingly sparse and spatio-temporally restricted fossil record1-5. Information about the early-diverging species along the avialan line is crucial to understand the evolution of the characteristic bird bauplan, and to reconcile phylogenetic controversies over the origin of birds3,4. Here we describe one of the stratigraphically youngest and geographically southernmost Jurassic avialans, Fujianvenator prodigiosus gen. et sp. nov., from the Tithonian age of China. This specimen exhibits an unusual set of morphological features that are shared with other stem avialans, troodontids and dromaeosaurids, showing the effects of evolutionary mosaicism in deep avialan phylogeny. F. prodigiosus is distinct from all other Mesozoic avialan and non-avialan theropods in having a particularly elongated hindlimb, suggestive of a terrestrial or wading lifestyle-in contrast with other early avialans, which exhibit morphological adaptations to arboreal or aerial environments. During our fieldwork in Zhenghe where F. prodigiosus was found, we discovered a diverse assemblage of vertebrates dominated by aquatic and semi-aquatic species, including teleosts, testudines and choristoderes. Using in situ radioisotopic dating and stratigraphic surveys, we were able to date the fossil-containing horizons in this locality-which we name the Zhenghe Fauna-to 148-150 million years ago. The diversity of the Zhenghe Fauna and its precise chronological framework will provide key insights into terrestrial ecosystems of the Late Jurassic.


Asunto(s)
Aves , Dinosaurios , Fósiles , Animales , China , Dinosaurios/anatomía & histología , Dinosaurios/clasificación , Ecosistema , Mosaicismo , Filogenia , Aves/anatomía & histología , Aves/clasificación , Historia Antigua , Miembro Posterior
2.
Proc Natl Acad Sci U S A ; 115(45): 11555-11560, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348768

RESUMEN

We describe a specimen of the basal ornithuromorph Archaeorhynchus spathula from the Lower Cretaceous Jiufotang Formation with extensive soft tissue preservation. Although it is the fifth specimen to be described, unlike the others it preserves significant traces of the plumage, revealing a pintail morphology previously unrecognized among Mesozoic birds, but common in extant neornithines. In addition, this specimen preserves the probable remnants of the paired lungs, an identification supported by topographical and macro- and microscopic anatomical observations. The preserved morphology reveals a lung very similar to that of living birds. It indicates that pulmonary specializations such as exceedingly subdivided parenchyma that allow birds to achieve the oxygen acquisition capacity necessary to support powered flight were present in ornithuromorph birds 120 Mya. Among extant air breathing vertebrates, birds have structurally the most complex and functionally the most efficient respiratory system, which facilitates their highly energetically demanding form of locomotion, even in extremely oxygen-poor environments. Archaeorhynchus is commonly resolved as the most basal known ornithuromorph bird, capturing a stage of avian evolution in which skeletal indicators of respiration remain primitive yet the lung microstructure appears modern. This adds to growing evidence that many physiological modifications of soft tissue systems (e.g., digestive system and respiratory system) that characterize living birds and are key to their current success may have preceded the evolution of obvious skeletal adaptations traditionally tracked through the fossil record.


Asunto(s)
Aves/anatomía & histología , Fósiles/anatomía & histología , Pulmón/anatomía & histología , Oxígeno/fisiología , Respiración , Adaptación Fisiológica , Animales , Evolución Biológica , Aves/clasificación , Aves/fisiología , China , Extinción Biológica , Plumas/anatomía & histología , Plumas/fisiología , Vuelo Animal/fisiología , Fósiles/historia , Historia Antigua , Pulmón/fisiología , Filogenia
3.
Nat Commun ; 8: 14141, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28139644

RESUMEN

Enantiornithes are the most successful clade of Mesozoic birds. Here, we describe a new enantiornithine bird, Cruralispennia multidonta gen. et sp. nov., from the Protopteryx-horizon of the Early Cretaceous Huajiying Formation of China. Despite being among the oldest known enantiornithines, Cruralispennia displays derived morphologies that are unexpected at such an early stage in the evolution of this clade. A plough-shaped pygostyle, like that of the Ornithuromorpha, evolved convergently in the Cruralispennia lineage, highlighting the homoplastic nature of early avian evolution. The extremely slender coracoid morphology was previously unknown among Early Cretaceous enantiornithines but is common in Late Cretaceous taxa, indicating that by 131 million years ago this clade had already experienced considerable morphological differentiation. Cruralispennia preserves unusual crural feathers that are proximally wire-like with filamentous distal tips, a new morphotype previously unknown among fossil or modern feathers, further increasing the known diversity of primitive feather morphologies.


Asunto(s)
Evolución Biológica , Aves/anatomía & histología , Plumas/anatomía & histología , Fósiles/anatomía & histología , Animales , Aves/clasificación , Aves/fisiología , China , Plumas/fisiología , Historia Antigua , Filogenia , Columna Vertebral
4.
Nature ; 455(7216): 1105-8, 2008 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-18948955

RESUMEN

Recent coelurosaurian discoveries have greatly enriched our knowledge of the transition from dinosaurs to birds, but all reported taxa close to this transition are from relatively well known coelurosaurian groups. Here we report a new basal avialan, Epidexipteryx hui gen. et sp. nov., from the Middle to Late Jurassic of Inner Mongolia, China. This new species is characterized by an unexpected combination of characters seen in several different theropod groups, particularly the Oviraptorosauria. Phylogenetic analysis shows it to be the sister taxon to Epidendrosaurus, forming a new clade at the base of Avialae. Epidexipteryx also possesses two pairs of elongate ribbon-like tail feathers, and its limbs lack contour feathers for flight. This finding shows that a member of the avialan lineage experimented with integumentary ornamentation as early as the Middle to Late Jurassic, and provides further evidence relating to this aspect of the transition from non-avian theropods to birds.


Asunto(s)
Dinosaurios/anatomía & histología , Dinosaurios/clasificación , Plumas/anatomía & histología , Fósiles , Animales , China , Historia Antigua , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA