RESUMEN
Trichosanthes kirilowii Maxim seed is a primary source of edible vegetable oil and possesses a high nutritional value, making them extremely beneficial to humanity. To promote the extraction process of Trichosanthes kirilowii Maxim seed oil, the effect of microwave heating time (700 W for 0, 2, 4, and 6 min) on lipid composition, chemical properties, and antioxidant activity of oils was studied. The results showed that the oil yield of the seed increased with the microwave heating time. Besides, microwave heating time significantly affects (p < 0.05) DPPH and tocopherols, and the IC50 value of DPPH was highest with microwave heating for 6 min, whatever the shells are reserved. The tocopherol content was highest with microwave heating for 2 min in the seed shell oil, which was 1930.60 mg/kg. The longer microwave heating time could improve the oil yield and antioxidant activity of Trichosanthes kirilowii Maxim seed oil. The seed shell also affects chemical properties, fatty acid composition, antioxidant activity, and tocopherol contents of the Trichosanthes kirilowii Maxim seed oil. The Trichosanthes kirilowii Maxim seed shell oil has higher DPPH and tocopherols contents than seed kernel oil, while seed kernel oils showed higher oil yield and acid value. Our finding is valuable for manufacturers to choose suitable means to produce Trichosanthes kirilowii Maxim seed oil of required qualities and chemical compositions for targeted use.
Asunto(s)
Trichosanthes , Antioxidantes/análisis , Calefacción , Microondas , Aceites de Plantas/análisis , Semillas/química , Tocoferoles/análisis , Trichosanthes/químicaRESUMEN
Phototherapy exerts its anticancer effects by converting laser radiation energy into hyperthermia or reactive singlet oxygen (1O2). In this study, we developed chitosan nanoparticles (CS NPs) encapsulating both photothermal (IR780) and photodynamic (5-Aminolevulinic acid (5-ALA)) reagents for photothermally enhanced photodynamic therapy by noninvasive oral administration. The 5-ALA&IR780@CS NPs were stable in acidic conditions similar to the gastric environment, which greatly improved drug oral absorption and local accumulation in subcutaneous mouse colon tumors (CT-26 cells) following oral gavage. Mechanistic studies revealed that the co-delivery system can lead to photothermally enhanced photodynamic effects against cancer cells by increasing oxidative stress, including the elevation of ROS, superoxide and 1O2 production. Additionally, significant therapeutic efficacy for cancer treatment were observed in vivo after oral administration of 5-ALA&IR780@CS NPs, without causing any overt adverse effects. Our work highlights the great potential of photothermally enhanced photodynamic therapy by CS NPs for colon cancer management via oral route.