Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Food Biochem ; 43(7): e12892, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31353745

RESUMEN

To better comprehend the mechanism that neuropeptide Y (npy) regulates feeding in Schizothorax davidi, we cloned and identified the full-length cDNA sequence of the npy gene in this species using RACE technology. Subsequently, we explored the npy mRNA distribution in 18 tissues and investigated the expression of npy mRNA at postprandial and fasting stages. We found that the npy full-length cDNA sequence is 803 bp. Moreover, npy mRNAs extensively expressed in all detected tissues, with the highest expression in hypothalamus. In postprandial study, the expression of npy mRNA in the hypothalamus was significantly decreased after eating (p < 0.01). In addition, the expression of the npy gene was significantly increased on the fifth day after fasting (p < 0.05). However, after refeeding, the expression of the npy gene was decreased significantly on days 9, 11, and 14 (p < 0.01). Our research suggest that npy may have an orexigenic role in S. davidi. PRACTICAL APPLICATIONS: S. davidi, a coldwater fish native to China, has high economic value, and it has gained great popularity. To date, there is still no large-scale breeding of S. davidi in China. How to strengthen the production performance of S. davidi is a hot research area. Neuropeptide Y (NPY), a 36-amino-acid single-chain polypeptide, is one of the main appetite regulation factors. However, to date, no studies have reported on the biological function of npy in the feeding of S. davidi. In our study, we revealed that the trend of hypothalamic npy expression during the postprandial and fasting stages. The results suggested that npy might be an appetite-promoting factor in this species. Overall, we provide the theoretical basis for how to strengthen the production performance of S. davidi through appetite regulation.


Asunto(s)
Regulación del Apetito/fisiología , Cyprinidae/genética , Ayuno/psicología , Neuropéptido Y/genética , Animales , China , Clonación Molecular , Cyprinidae/fisiología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Hipotálamo/fisiología , Masculino , Neuropéptido Y/metabolismo , Periodo Posprandial/fisiología , ARN Mensajero/genética
2.
Fish Physiol Biochem ; 42(6): 1637-1646, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27287038

RESUMEN

Ghrelin, a non-amidated peptide hormone, is a potent anorectic neuropeptide implicated in feeding regulation in mammals and non-mammalian vertebrates. However, the involvement of ghrelin in the feeding behavior of teleosts has not been well understood. To better understand the role of ghrelin in the regulation of appetite in fish, in this study, we cloned the cDNAs encoding ghrelin and investigated their mRNA distributions in gibel carp tissues. We also assessed the effects of different nutritional status on ghrelin mRNA abundance. Ghrelin mRNAs were ubiquitously expressed in ten tissues (intestine, liver, brain, mesonephron, head kidney, spleen, skin, heart, muscle, gill and pituitary gland), and relatively high expression levels were detected in the gut. Postprandial studies analysis revealed a significant postprandial decrease in ghrelin mRNA expression in the gut (1 and 3 h after the regular feeding time). In addition, ghrelin mRNA expression in the gut significantly increased at day 7 after fasting and declined sharply after refeeding, which suggested that ghrelin might be involved in the regulation of appetite in gibel carp. Overall, our result provides basis for further investigation into the regulation of feeding in gibel carp.


Asunto(s)
Ingestión de Alimentos/fisiología , Ghrelina/fisiología , Carpa Dorada/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , Conducta Alimentaria/fisiología , Privación de Alimentos , Ghrelina/genética , Filogenia , Periodo Posprandial/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA