Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 262(Pt 1): 130018, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331057

RESUMEN

The potential prebiotic feature of Bletilla striata polysaccharides (BSP) has been widely accepted, while the beneficial effect of BSP on high-fat-diet-induced obesity is unclear. Moreover, the "crosstalk" between microbiota and metabolomic profile in high-fat-diet-induced obese mice supplemented with BSP still need to be further explored. The present study attempted to illustrate the effect of BSP and/or composite polysaccharides on high-fat-diet-induced obese mice by combining multi-matrix (feces, urine, liver) metabolomics and gut microbiome. The results showed that BSP and/or composite polysaccharides were able to reduce the abnormal weight gain induced by high-fat diet. A total of 175 molecules were characterized by proton nuclear magnetic resonance (1H NMR) in feces, urine and liver, suggesting that multi-matrix metabolomics could provide a comprehensive view of metabolic regulatory mechanism of BSP in high-fat-diet-induced obese mice. Several pathways were altered in response to BSP supplementation, mainly pertaining to amino acid, purine, pyrimidine, ascorbate and aldarate metabolisms. In addition, BSP ameliorated high-fat-diet-induced imbalanced gut microbiome, by lowering the ratio of Firmicutes/Bacteroidetes. Significant correlations were illustrated between particular microbiota's features and specific metabolites. Overall, the anti-obesity effect of BSP could be attributed to the amelioration of the disorders of gut microbiota and to the regulation of the "gut-liver axis" metabolism.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Ratones Obesos , Obesidad/etiología , Obesidad/inducido químicamente , Polisacáridos/química , Suplementos Dietéticos , Ratones Endogámicos C57BL
2.
Artículo en Inglés | MEDLINE | ID: mdl-30455879

RESUMEN

BACKGROUND: Due to the important functions of arginine in poultry, it should be questioned whether the currently adopted dietary Arg:Lys ratios are sufficient to meet the modern broiler requirement in arginine. The present study aimed, therefore, to evaluate the effects of the dietary supplementation of L-arginine in a commercial broiler diet on productive performance, breast meat quality attributes, incidence and severity of breast muscle myopathies and foot pad dermatitis (FPD), and plasma and muscle metabolomics profile in fast-growing broilers. RESULTS: A total of 1,170 1-day-old Ross 308 male chicks was divided into two experimental groups of 9 replicates each fed either a commercial basal diet (CON, digestible Arg:Lys ratio of 1.05, 1.05, 1.06 and 1.07 in each feeding phase, respectively) or the same basal diet supplemented on-top with crystalline L-arginine (ARG, digestible Arg:Lys ratio of 1.15, 1.15, 1.16 and 1.17, respectively). Productive parameters were determined at the end of each feeding phase (12, 22, 33, 43 d). At slaughter (43 d), incidence and severity of FPD and breast myopathies were assessed, while plasma and breast muscle samples were collected and analyzed by proton nuclear magnetic resonance-spectroscopy. The dietary supplementation of arginine significantly reduced cumulative feed conversion ratio compared to the control diet at 12 d (1.352 vs. 1.401, P < 0.05), 22 d (1.398 vs. 1.420; P < 0.01) and 33 d (1.494 vs. 1.524; P < 0.05), and also tended to improve it in the overall period of trial (1.646 vs. 1.675; P = 0.09). Body weight was significantly increased in ARG compared to CON group at 33 d (1,884 vs. 1,829 g; P < 0.05). No significant effect was observed on meat quality attributes, breast myopathies and FPD occurrence. ARG birds showed significantly higher plasma concentration of arginine and leucine, and lower of acetoacetate, glutamate, adenosine and proline. Arginine and acetate concentrations were higher, whereas acetone and inosine levels were lower in the breast of ARG birds (P < 0.05). CONCLUSIONS: Taken together, these data showed that increased digestible Arg:Lys ratio had positive effects on feed efficiency in broiler chickens probably via modulation of metabolites that play key roles in energy and protein metabolism.

3.
J Appl Physiol (1985) ; 125(2): 654-660, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29672225

RESUMEN

The attention of sports community toward probiotic supplementation as a way to promote exercise and training performance, together with good health, has increased in recent years. This has applied also to horses, with promising results. Here, for the first time, we tested a probiotic mix of several strains of live bacteria typically employed for humans to improve the training performance of Standardbred horses in athletic activity. To evaluate its effects on the horse performance, we measured lactate concentration in blood, a translational outcome largely employed for the purpose, combined with the study of hematological and biochemical parameters, together with urine from a metabolomics perspective. The results showed that the probiotic supplementation significantly reduced postexercise blood lactate concentration. The hematological and biochemical parameters, together with urine molecular profile, suggested that a likely mechanism underlying this positive effect was connected to a switch of energy source in muscle from carbohydrates to short-chain fatty acids. Three sulfur-containing molecules differently concentrated in urines in connection to probiotics administration suggested that such switch was linked to sulfur metabolism. NEW & NOTEWORTHY Probiotic supplementation could reduce postexercise blood lactate concentration in Standardbred horses in athletic activity. Blood parameters, together with urine molecular profile, suggest the mechanism underlying this positive effect is connected to a switch of energy source in muscle from carbohydrates to short-chain fatty acids. Sulfur-containing molecules found in urines in connection to probiotics administration suggested that such switch was linked to sulfur metabolism.


Asunto(s)
Caballos/sangre , Caballos/orina , Metaboloma/efectos de los fármacos , Condicionamiento Físico Animal/fisiología , Probióticos/administración & dosificación , Orina/química , Animales , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Femenino , Caballos/metabolismo , Lactatos/metabolismo , Masculino , Metabolómica/métodos , Músculo Esquelético/metabolismo , Patología Clínica/métodos , Deportes/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA