Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Food Funct ; 14(9): 4143-4162, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37060117

RESUMEN

This study investigated the effects of dietary berberine (BBR) supplementation on the growth performance, intestinal health, and ileal microbiome and metabolomic profile in weaned piglets challenged with enterotoxigenic Escherichia coli (ETEC). Dietary BBR supplementation significantly attenuated the reduced average daily gain (ADG) and attenuated the increased feed to gain ratio (F/G) and the incidence of diarrhea induced by ETEC K88 (P < 0.05). Dietary BBR supplementation significantly increased the villus height and the villus height to crypt depth ratio in the ileum (P < 0.05). Moreover, the mRNA expression of ZO-1 and occludin as well as aquaporins (AQP1, AQP3, AQP4, AQP7, and AQP10) and Na+/H+ exchanger 3 (NHE3) in ileal mucosa was significantly upregulated by BBR treatment (P < 0.05). Additionally, BBR treatment significantly inhibited the increase of interleukin-1ß (IL-1ß) in jejunal mucosa caused by ETEC and reduced the levels of tumor necrosis factor-α (TNF-α) and IL-1ß and increased interleukin-10 (IL-10) in colonic mucosa (P < 0.05). Dietary BBR treatment significantly increased the Observed_species, Chao 1, abundance based coverage estimators (ACE), and PD_whole tree in the ileal digesta of weaned piglets challenged with ETEC. At the genus level, the relative abundance of unidentified Clostridiales was decreased, while Weissella, Alloprevotella, unidentified Prevotellaceae, and Catenibacterium were increased in the BBR + ETEC group when compared to the ETEC group (P < 0.05). Spearman correlation analysis showed that the relative abundance of unidentified Clostridiales (genus) was negatively correlated with the ileal villus height but negatively correlated with diarrhea and intestinal IL-1ß and TNF-α concentrations (P < 0.05). The ileal metabolome analysis showed that the metabolic pathways including primary and secondary bile acid biosynthesis and bile secretion were significantly enriched by BBR treatment. Collectively, dietary BBR supplementation effectively improved the growth performance and alleviated the diarrhea and intestinal injury induced by ETEC K88 in weaned piglets, which might closely involve the modulation of ileal microbiota and metabolites.


Asunto(s)
Berberina , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Microbiota , Animales , Porcinos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Factor de Necrosis Tumoral alfa , Diarrea/tratamiento farmacológico , Diarrea/veterinaria , Diarrea/microbiología , Íleon/patología , Suplementos Dietéticos
2.
Poult Sci ; 102(4): 102370, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36774711

RESUMEN

This experiment investigated the protective effect of resveratrol (RES) on the hepatic antioxidant status and systemic inflammation in yellow-feathered broilers challenged with lipopolysaccharide (LPS). A total of 240 healthy 1-day-old yellow-feathered broilers were randomly divided into 4 groups (control, LPS, RES, and RES+LPS), with 5 replicates of 12 chickens per replicate. The experiment lasted 21 d. The broilers were fed with either the basal diet or the basal diet supplemented with 400 mg/kg RES followed by intraperitoneal challenge with LPS (1 mg/kg body weight) or the same amount of saline at d 16, 18, and 20. The results showed that dietary RES supplementation could improve the activities of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in the liver of yellow-feathered broilers challenged with LPS (P < 0.05). Furthermore, LPS challenge increased the plasma interleukin-17 (IL-17) concentration, the hepatic interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) concentrations, as well as the concentrations of tumor necrosis factor (TNF-α), IL-6, and IL-1ß in the spleen (P < 0.05), and decreased the transforming growth factor-ß (TGF-ß) concentrations in the plasma, liver, and spleen (P < 0.05). However, dietary RES supplementation could reduce the increased TNF-α levels in the plasma, liver, and spleen induced by LPS, and increased TGF-ß level in the liver and spleen (P < 0.05). Collectively, these results suggest that dietary RES supplementation could effectively improve the hepatic antioxidant capacity and attenuate LPS-induced inflammation in yellow-feathered broilers during the starter stage.


Asunto(s)
Antioxidantes , Lipopolisacáridos , Animales , Resveratrol , Lipopolisacáridos/farmacología , Pollos , Interleucina-6 , Factor de Necrosis Tumoral alfa , Suplementos Dietéticos/análisis , Dieta/veterinaria , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/veterinaria , Hígado , Factor de Crecimiento Transformador beta , Alimentación Animal/análisis
3.
Anim Biotechnol ; 34(4): 921-934, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34871537

RESUMEN

This study investigated potential mechanism of dibutyryl-cAMP (db-cAMP) on porcine fat deposition. (1) Exp.1, 72 finishing pigs were allotted to 3 treatments (0, 10 or 20 mg/kg dbcAMP) with 6 replicates. dbcAMP increased the hormone sensitive lipase (HSL) activity and expression of ß-adrenergic receptor (ß-AR) and growth hormone receptor (GHR), but decreased expression of peroxisome proliferator-activated receptor gamma 2 (PPAR-γ2) and adipocyte fatty acid binding protein (A-FABP) in back fat. dbcAMP upregulated expression of ß-AR, GHR, PPAR-γ2 and A-FABP, but decreased insulin receptor (INSR) expression in abdominal fat. Dietary dbcAMP increased HSL activity and expression of G protein-coupled receptor (GPCR), cAMP-response element-binding protein (CREB) and insulin-like growth factor-1 (IGF-1), but decreased fatty acid synthase (FAS) and lipoprotein lipase (LPL) activities, and expression of INSR, cAMP-response element-binding protein (C/EBP-α) and A-FABP in perirenal fat. (2) Exp. 2, dbcAMP suppressed the proliferation and differentiation of porcine preadipocytes in a time- and dose-dependent manner, which might be associated with increased activities of cAMP and protein kinase A (PKA), and expression of GPCR, ß-AR, GHR and CREB via inhibiting C/EBP-α and PPAR-γ2 expression. Collectively, dbcAMP treatment may reduce fat deposition by regulating gene expression related to adipocyte differentiation and fat metabolism partially via cAMP-PKA pathway.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Receptores Activados del Proliferador del Peroxisoma , Animales , Porcinos , Bucladesina/farmacología , Bucladesina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Tejido Adiposo/metabolismo , Suplementos Dietéticos
4.
Front Microbiol ; 13: 961989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081792

RESUMEN

The purpose of this study was to evaluate the effects of different levels of potassium magnesium sulfateon (PMS) on growth performance, diarrhea rate, intestinal morphology, antioxidant capacity, intestinal immunity, and gut microbiota in weaned piglets. A total of 216 weaned piglets were randomly divided into six dietary groups: the basal diet with 0% (CON), 0.15, 0.3, 0.45, 0.6, and 0.75% PMS. The results showed that the ADFI of 29-42 days and 1-42 days was linearly and quadratically increased by the PMS supplementation (P < 0.05), and significantly reduced the diarrhea rate in weaned piglets (P < 0.05). Moreover, dietary supplementation with PMS significantly reduced the serum adrenaline and noradrenaline levels in weaned piglets (P < 0.05). Furthermore, 0.3% PMS significantly increased the activity of glutathione peroxidase (GSH-Px) in the jejunum (P < 0.05) and tended to increase the activity of superoxide dismutase (SOD) in the jejunal mucosa of piglets (P < 0.1). Additionally, dietary supplementation with PMS significantly reduced the interleukin-1ß (IL-1ß) level in the jejunal mucosa (P < 0.05), and 0.3% PMS increased the serum IgM content in piglets (P < 0.05). Furthermore, the analysis of colonic microbiota by 16S RNA sequencing showed that the addition of PMS increased the Shannon index (P < 0.05) and Observed Species index (P < 0.05). Based on linear discriminant analysis effect size (LEfSe) and T-test analysis, the addition of PMS increased the relative abundance of Ruminococcaceae and Peptostreptococcaceae in the colonic digesta (P < 0.05). Spearman analysis showed that there was a positive correlation between intestinal GSH-Px activity and the relative abundance of Peptostreptococcaceae. These results showed that dietary supplementation with PMS could improve growth performance, alleviate diarrhea incidence, and modulate the antioxidant capacity and intestinal immunity in weaned piglets, which was partially related to the significant changes in colonic microbiota composition.

5.
Antioxidants (Basel) ; 11(8)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36009229

RESUMEN

This study investigated the effects of dietary compound antioxidants on growth performance, antioxidant capacity, carcass traits, meat quality, and gut microbiota in finishing pigs. A total of 36 barrows were randomly assigned to 2 treatments with 6 replicates. The pigs were fed with a basal diet (control) or the basal diet supplemented with 200 mg/kg vitamin E, 0.3 mg/kg selenium-enriched yeast, and 20 mg/kg soy isoflavone. Dietary compound antioxidants decreased the average daily feed intake (ADFI) and feed to gain ratio (F/G) at d 14−28 in finishing pigs (p < 0.05). The plasma total protein, urea nitrogen, triglyceride, and malondialdehyde (MDA) concentrations were decreased while the plasma glutathione (GSH) to glutathione oxidized (GSSG) ratio (GSH/GSSG) was increased by compound antioxidants (p < 0.05). Dietary compound antioxidants increased loin area and b* value at 45 min, decreased backfat thickness at last rib, and drip loss at 48 h (p < 0.05). The relative abundance of colonic Peptococcus at the genus level was increased and ileal Turicibacter_sp_H121 abundance at the species level was decreased by dietary compound antioxidants. Spearman analysis showed a significant negative correlation between the relative abundance of colonic Peptococcus and plasma MDA concentration and meat drip loss at 48 h. Collectively, dietary supplementation with compound antioxidants of vitamin E, selenium-enrich yeast, and soy isoflavone could improve feed efficiency and antioxidant capacity, and modify the backfat thickness and meat quality through modulation of the gut microbiota community.

6.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35955466

RESUMEN

(1) Background: Changes in the expression of aquaporins (AQPs) in the intestine are proved to be associated with the attenuation of diarrhea. Diarrhea is a severe problem for postweaning piglets. Therefore, this study aimed to investigate whether niacin could alleviate diarrhea in weaned piglets by regulating AQPs expression and the underlying mechanisms; (2) Methods: 72 weaned piglets (Duroc × (Landrace × Yorkshire), 21 d old, 6.60 ± 0.05 kg) were randomly allotted into 3 groups for a 14-day feeding trial. Each treatment group included 6 replicate pens and each pen included 4 barrows (n = 24/treatment). Piglets were fed a basal diet (CON), a basal diet supplemented with 20.4 mg niacin/kg diet (NA) or the basal diet administered an antagonist for the GPR109A receptor (MPN). Additionally, an established porcine intestinal epithelial cell line (IPEC-J2) was used to investigate the protective effects and underlying mechanism of niacin on AQPs expression after Escherichia coli K88 (ETEC K88) treatment; (3) Results: Piglets fed niacin-supplemented diet had significantly decreased diarrhea rate, and increased mRNA and protein level of ZO-1, AQP 1 and AQP 3 in the colon compared with those administered a fed diet supplemented with an antagonist (p < 0.05). In addition, ETEC K88 treatment significantly reduced the cell viability, cell migration, and mRNA and protein expression of AQP1, AQP3, AQP7, AQP9, AQP11, and GPR109A in IPEC-J2 cells (p < 0.05). However, supplementation with niacin significantly prevented the ETEC K88-induced decline in the cell viability, cell migration, and the expression level of AQPs mRNA and protein in IPEC-J2 cells (p < 0.05). Furthermore, siRNA GPR109A knockdown significantly abrogated the protective effect of niacin on ETEC K88-induced cell damage (p < 0.05); (4) Conclusions: Niacin supplementation increased AQPs and ZO-1 expression to reduce diarrhea and intestinal damage through GPR109A pathway in weaned piglets.


Asunto(s)
Acuaporinas , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Niacina , Animales , Acuaporinas/genética , Diarrea/tratamiento farmacológico , Diarrea/prevención & control , Diarrea/veterinaria , Infecciones por Escherichia coli/prevención & control , Intestinos , Niacina/farmacología , ARN Mensajero , Porcinos , Regulación hacia Arriba
7.
Front Biosci (Landmark Ed) ; 27(3): 83, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35345315

RESUMEN

BACKGROUND: Dietary supplementation with L-arginine (Arg) has been shown to increase the volume of fetal fluids in gestating swine. Aquaporins (AQPs), known as water channel proteins, are essential for embryonic growth and development. It was not known if Arg mediates water transport through AQPs in porcine conceptus trophectoderm (pTr2) cells. METHODS: pTr2 cells derived from pregnant gilts on day 12 of gestation were cultured in customized Arg-free Dulbecco's modified Eagle's Ham medium (DMEM) supplemented with either 0.00, 0.25, or 0.50 mM Arg. RESULTS: Arg treatment increased water transport and the expression of AQP3, which was abundantly expressed in pTr2 cells at both the mRNA and protein levels. Arg also increased the expression of iNOS and the synthesis of nitric oxide (NO) in pTr2 cells. The presence of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME; an inhibitor of NO synthase) significantly attenuated the Arg-induced expression of AQP3. Furthermore, 0.50 mM Arg increased the concentrations of cAMP and the abundances of phosphorylated cAMP-dependent protein kinase A (PKA), phosphorylated PKA α/ß/γ, and phosphorylated CREB. These effects of Arg were mimicked by Forskolin (a cell-permeable activator of adenylyl cyclase), but inhibited by H-89 (an inhibitor of cAMP-dependent protein kinase). CONCLUSIONS: The results of this study demonstrate that Arg regulates AQP3 expression and promotes water transport in pTr2 cells through NO- and cAMP-dependent signaling pathways.


Asunto(s)
Acuaporinas , Óxido Nítrico , Animales , Acuaporina 3/genética , Acuaporinas/genética , Arginina/metabolismo , Arginina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Óxido Nítrico/metabolismo , Embarazo , Sus scrofa/metabolismo , Porcinos , Agua/metabolismo
8.
Amino Acids ; 53(8): 1287-1295, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34241695

RESUMEN

This study tested the hypothesis that dietary L-arginine (Arg) supplementation to pregnant gilts enhanced the expression of water channel proteins [aquaporins (AQPs)] in their placentae and endometria. Gilts were fed twice daily 1 kg of a corn and soybean meal-based diet supplemented with 0.0%, 0.4%, or 0.8% Arg between Days 14 and 25 of gestation. On Days 25 and 60 of gestation, gilts were hysterectomized to obtain placentae and endometria. On Day 25 of gestation, supplementation with 0.4% Arg increased (P < 0.05) the abundance of placental AQP9 protein, whereas supplementation with 0.8% Arg increased (P < 0.05) placental AQP1 and AQP9 proteins, compared with controls. On Day 60 of gestation, supplementation with 0.4% Arg increased (P < 0.05) endometrial AQP1 protein, whereas supplementation with 0.8% Arg increased (P < 0.05) endometrial AQP5 and AQP9 proteins. Supplementation with 0.8% Arg increased the endometrial expression of AQP1, AQP5, and AQP9 proteins located in the luminal epithelium and glandular epithelium of endometria, and placental transport of 3H2O. Collectively, these results indicate that dietary Arg supplementation stimulates the expression of selective AQPs in porcine placenta and endometria, thereby enhancing water transport from mother to fetus and expanding the chorioallantoic membranes during the period of placentation.


Asunto(s)
Acuaporinas/metabolismo , Arginina/administración & dosificación , Suplementos Dietéticos , Endometrio/metabolismo , Placenta/metabolismo , Animales , Femenino , Embarazo , Porcinos
9.
J Anim Sci ; 99(6)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33928383

RESUMEN

This study was conducted to investigate the effects of early supplementation during 4 to 18 d of age with Lactobacillus plantarum (LP) in liquid diets on intestinal innate immune response in young piglets infected with enterotoxigenic Escherichia coli (ETEC) K88. Seventy-two barrow piglets at 4 d old were assigned to basal or LP-supplemented liquid diet (5 × 1010 CFU·kg-1). On day 15, piglets from each group were orally challenged with either ETEC K88 (1 × 108 CFU·kg-1) or the same amount of phosphate-buffered saline. The intestinal mucosa, mesenteric lymph node (MLN), and spleen samples were collected on day 18. Here, we found that LP pretreatment significantly decreased the mRNA relative expression of inflammatory cytokines (interleukin [IL]-1ß, IL-8, and tumor necrosis factor-α), porcine ß-defensin 2 (pBD-2), and mucins (MUC1 and MUC4) in the jejunal mucosa in piglets challenged with ETEC K88 (P < 0.05). Moreover, LP significantly decreased the ileal mucosa mRNA relative expression of IL-8 and MUC4 in young piglets challenged with ETEC K88 (P < 0.05). Furthermore, the piglets of the LP + ETEC K88 group had lower protein levels of IL-8, secretory immunoglobulin A, pBD-2, and MUC4 in the jejunal mucosa than those challenged with ETEC K88 (P < 0.05). Besides, LP supplementation reduced the percentage of gamma/delta T cells receptor (γδTCR) and CD172a+ (SWC3+) cells in MLN and the percentage of γδTCR cells in the spleen of young piglets after the ETEC K88 challenge. Supplementation with LP in liquid diets prevented the upregulated protein abundance of toll-like receptor (TLR) 4, phosphorylation-p38, and phosphorylation-extracellular signal-regulated protein kinases in the jejunal mucosa induced by ETEC K88 (P < 0.05). In conclusion, LP supplementation in liquid diet possesses anti-inflammatory activity and modulates the intestinal innate immunity during the early life of young piglets challenged with ETEC K88, which might be attributed to the suppression of TLR4-mediated mitogen-activated protein kinase signaling pathways. Early supplementation with LP in liquid diets regulates the innate immune response, representing a promising immunoregulation strategy for maintaining intestinal health in weaned piglets.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Lactobacillus plantarum , Animales , Dieta/veterinaria , Suplementos Dietéticos , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Inmunidad Innata , Mucosa Intestinal , Proteínas Quinasas Activadas por Mitógenos , Porcinos , Receptor Toll-Like 4/genética
10.
Poult Sci ; 100(2): 1034-1048, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33518062

RESUMEN

This study investigated the effect of berberine (BBR) on growth performance and composition and function of cecal microbiota in yellow-feathered broilers. A total of 360 1-day-old female broilers were assigned to 3 dietary treatments, each with 6 replicates of 20 birds. The dietary treatments consisted of a basal diet as negative control (NC), basal plus 200 mg/kg oxytetracycline calcium and 250 mg/kg nasiheptide as an antibiotic positive control (PC), and basal plus 250 mg/kg BBR. On day 21, 42, and 63, one chicken from each replicate was randomly selected for blood collection and cecal sampling. The 16S rRNA sequencing technology was used to analyze the community composition and function of cecal microbiota. Dietary supplementation with antibiotics or BBR increased the final body weight (BW) at day 63 and the average daily gain (ADG) during 1 to 21 d compared with the NC (P < 0.05). Supplementation with BBR improved the average daily feed intake (ADFI) at 22 to 42 d, 43 to 63 d, and 1 to 63 d (P < 0.05). Feed efficiency, indicated by feed to gain ratio (F/G), increased with PC during day 1 to 21 compared with NC (P < 0.05). The plasma concentrations of total protein at 42 d and uric acid at 21 d were increased, whereas creatine concentration at 63 d was decreased by BBR treatment (P < 0.05). The Chao 1 and Shannon index representing microbial α-diversity was reduced by BBR treatment (P < 0.05). The abundances of phylum Firmicutes and genera Lachnospiraceae, Lachnoclostridium, Clostridiales, and Intestinimonas were decreased, whereas the abundances of phylum Bacteroidetes and genus Bacteroides were increased with BBR treatment. Functional prediction of microbiota revealed that BBR treatment enriched pathways related to metabolism, organismal systems, and genetic information processing, especially DNA replication. The abundance of phylum Bacteroidetes, and genera Bacteroides and Lactobacillus in cecal contents were positively correlated with broiler growth performance. These results demonstrated dietary BBR supplementation improved the growth performance of yellow-feathered broilers, and was closely related to the significant changes in cecal microbiota composition.


Asunto(s)
Alimentación Animal , Berberina/administración & dosificación , Ciego/microbiología , Pollos/crecimiento & desarrollo , Microbioma Gastrointestinal , Alimentación Animal/análisis , Animales , Berberina/farmacología , Pollos/sangre , Dieta/veterinaria , Suplementos Dietéticos/análisis , Femenino , ARN Ribosómico 16S/química
11.
Poult Sci ; 99(11): 6022-6030, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33142521

RESUMEN

This research investigated effects of dietary phytosterols supplementation on growth performance and cecal gut microflora in yellow-feather broilers. A total of 360 yellow-feather broilers (1-day-old) were randomly assigned to 3 treatment groups: control group (basal diet), antibiotic group (basal diet supplemented with 200 mg/kg oxytetracycline calcium and 250 mg/kg nosiheptide), and phytosterols groups (basal diet supplemented with 25 mg/kg phytosterols). Each treatment group had 6 replicates, and there were 20 broilers within each replicate. No treatment effects on average daily feed intake, average daily gain, and food conversion rate were observed. The antibiotic group had a lower liver index compared with control group and phytosterols group. Other visceral indexes including bursa of Fabricius, spleen, and heart were not different among the 3 treatment groups. In terms of alpha diversity, no treatment effects on Shannon and Simpson indexes were observed. Supplementation of phytosterols significantly decreased the Chao1 and Ace indexes, indicating lower community richness of the gut microflora. At phylum level, the phytosterols group had a higher abundance of Bacteroidetes compared with the control group. At genus level, no treatment effect was observed on the top 10 genera. Overall, supplementation of phytosterols at 25 mg/kg level did not affect the growth performance of yellow-feather broilers, and its effect on gut microflora was limited.


Asunto(s)
Pollos , Suplementos Dietéticos , Microbioma Gastrointestinal , Fitosteroles , Alimentación Animal/análisis , Animales , Pollos/crecimiento & desarrollo , Pollos/microbiología , Dieta/veterinaria , Microbioma Gastrointestinal/efectos de los fármacos , Fitosteroles/farmacología
12.
Front Microbiol ; 11: 585623, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193234

RESUMEN

This study was carried out to investigate the effect of heat-inactivated compound probiotics on growth performance, plasma biochemical indices, and gut microbiota composition and functions in yellow-feathered broilers. A total of 360 1-day-old broilers were randomly divided into 3 groups, including a basal diet as negative control group (PC), basal diet plus antibiotics with 250 mg/kg calcium oxytetracycline and 200 mg/kg Nosiheptide as positive control (PC), and basal diet plus 500 mg/kg compound probiotics consisting of heat-inactivated Bacillus subtilis and Lactobacillus acidophilus BFI (BFI). Each group had 6 replicates of 20 chickens. On d 21, 42, and 63, one chick from each replicate was selected for blood collection and cecal sampling. Compared to the NC group, dietary supplementation with heat-inactivated compound probiotics increased the feed efficiency during d 1-63 (P < 0.05). The plasma cholesterol content at 42 d and creatinine content at 63 d were decreased by dietary supplementation with heat-inactivated compound probiotics (P < 0.05). The dominant phyla in broiler cecal microbiota were Bacteroidetes, Firmicutes, and Proteobacteria, while the dominant genera were Bacteroides, Ruminococcaceae, and Phascolarctobacterium. The ß-diversity index of cecal microbiota in BFI group was increased at d 42 (P < 0.01) and d 63 (P < 0.05). Dietary heat-inactivated compound probiotics increased the relative abundances of Barnesiellaceae (family), Barnesiella (genus), and Lactobacillus aviarius (species) at d 21, and reduced the relative abundances of genera Lachnoclostridium and Peptococcus at d 42, and unidentified Lachnospiraceae and Lachnoclostridium at d 63. The functional prediction of microbiota revealed that supplementation with heat-inactivated compound probiotics enriched the pathways related to methane metabolism, transcription machinery, purine metabolism and protein export. The Spearman's correlation analysis identified a significant correlation between cecal microbiota composition and overall feed efficiency and plasma metabolites. Collectively, dietary heat-inactivated compound probiotics with Bacillus subtilis and Lactobacillus acidophilus BFI enhanced feed efficiency, and decreased plasma cholesterol and creatinine contents, which might be associated with the modulation of community composition, diversity and functions of cecal microbiota in yellow-feathered broilers. These results indicated the potential of heat-inactivated probiotics used as alternatives to antibiotics for improvement of broiler health and productivity.

13.
Biol Reprod ; 101(1): 126-137, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30985894

RESUMEN

Lactating mammary glands are among the most active lipogenic organs and provide a large percentage of bioactive lipids and calories for infant growth. The branched-chain amino acid (BCAA) valine is known to modulate fatty acids synthesis in adipose tissue; however, its effects on fat metabolism and the underlying mechanisms in mammary glands remain to be determined. Valine supplementation during late pregnancy significantly increased the contents of total milk fat, triglyceride, sphingomyelin, and polyunsaturated fatty acids in the colostrum of gilts. Further study in porcine mammary epithelial cells (PMECs) confirmed that valine upregulated the phosphorylation levels of AKT-activated MTOR and subsequently induced the nuclear accumulation of sterol regulatory element binding protein 1 (SREBP1), thus increasing the expression of proteins related to fatty acids synthesis and intracellular triacylglycerol content. Inhibition of AKT/MTOR signaling or silencing of SREBP1 in PMECs downregulates the expression of proteins related to fatty acids synthesis and intracellular triacylglycerol content. Our findings indicated that valine enhanced milk fat synthesis of colostrum in porcine mammary glands via the AKT/MTOR/SREBP1 signaling pathway.


Asunto(s)
Ácidos Grasos/metabolismo , Lactancia/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Leche/efectos de los fármacos , Porcinos , Valina/farmacología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Células Cultivadas , Suplementos Dietéticos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Lactancia/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Glándulas Mamarias Animales/efectos de los fármacos , Leche/química , Leche/metabolismo , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Valina/administración & dosificación
14.
Chin J Integr Med ; 24(10): 741-745, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29667148

RESUMEN

OBJECTIVE: To evaluate the diagnostic significance of sublingual nodules for metastasis of patients with breast cancer and further to explore the mechanisms of sublingual nodules. METHODS: The image data of 117 in-patients with breast cancer in stage I-IV in Tianjin Medical University Cancer Institute and Hospital from December 2009 to September 2011 were assessed retrospectively. All photos of patients' tongue were recorded by the digital camera of uniform type within 1 month after serological examination and regular re-examined by computed tomography (CT), magnetic resonance imaging and positron emission tomography CT. The presence of sublingual nodules was the positive standard. Chi square test and two-independent-sample test were used to determine the diagnostic value between the status of sublingual nodules and Clinico-pathological characteristics. The optimal cut-off of uric acid (UA) level to diagnose sublingual nodules was determined by receiver operating curve (ROC) analysis. RESULTS: Breast cancer patients with sublingual nodules had a higher risk of recurrence and/or metastasis than patients without it (P<0.001). Sublingual nodules was significantly correlated with increased serum UA level (P=0.001). The optimal cut-off value of UA level to diagnose sublingual nodules was 290 µmol/L. Furthermore, the elevated serum UA level (≥290 µmol/L) was significantly related to breast cancer recurrence and/or metastasis (P<0.001). CONCLUSIONS: Sublingual nodules were potential diagnostic markers for metastatic breast cancer. The formation of sublingual nodules was associated with elevated level of serum UA.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Glándula Sublingual/patología , Adulto , Anciano , Neoplasias de la Mama/sangre , Femenino , Humanos , Persona de Mediana Edad , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/patología , Curva ROC , Ácido Úrico/sangre
15.
Front Microbiol ; 8: 825, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28536569

RESUMEN

Dietary zinc oxide (ZnO) at pharmacological level has been widely used to prevent and treat diarrhea in weaning piglets. Despite its importance for promoting animal health and performance, the influence of microbiome profiles in intestinal tracts by ZnO needs to be comprehensively investigated. In this study, we conducted a comparative microbial community analysis in the ileum and colon of piglets fed by either control diet, high ZnO (3,000 mg/kg) supplement or antibiotics (300 mg/kg chlortetracycline and 60 mg/kg colistin sulfate) supplement. Our results showed that both high dietary ZnO and in-feed antibiotics supplementations significantly increased 5 phyla of Spirochaetes, Tenericutes, Euryarchaeota, Verrucomicrobia, TM7, and reduced 1 phyla of Chlamydiae in ileal digesta. The relative abundance of opportunistic pathogens Campylobacterales were decreased while Enterobacteriales were increased in ZnO or antibiotics-supplemented group when compared to the control. In the colon, the phyla Euryarchaeota, the genus Methanobrevibacter, and the species Methanobrevibacter smithii were drastically increased by high dietary ZnO supplementation when compared with other groups. The microbial functional prediction analysis showed that high dietary ZnO and in-feed antibiotics had a higher abundance of transporter pathway enrichment in the ileum when compared with the control. While in the colon high dietary ZnO had a higher abundant enrichment of methane metabolism involving energy supply when compared with other groups. Both high dietary ZnO and antibiotics increased the microbiota diversity of ileal digesta while they decreased the microbiota diversity of the colonic digesta. Collectively, these results suggested that dietary ZnO and in-feed antibiotics supplementations presented similar effect on ileal microbiota, and mainly affected the non-predominant microbiota.

16.
Plant Physiol Biochem ; 115: 200-211, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28376412

RESUMEN

Molybdenum (Mo)-an essential element of plants-is involved in nitrogen (N) metabolism. Plants tend to accumulate more nitrate and show lower nitrogen use efficiency (NUE) under Mo-deficient conditions. Improving NUE in fruits reduces the negative effect of large applications of chemical fertilizer, but the mechanisms underlying how Mo enhances NUE remain unclear. We cultivated strawberry seedlings sprayed with 0, 67.5, 135, 168.75, or 202.5 g Mo·ha-1 in a non-soil culture system. The Mo concentration in every plant tissue analyzed increased gradually as Mo application level rose. Mo application affected iron, copper, and selenium adsorption in roots. Seedlings sprayed with 135 g Mo·ha-1 had a higher [15N] shoot:root (S:R) ratio, and 15NUE, and produced higher molybdate transporter type 1 (MOT1) expression levels in the roots and leaves. Seedlings sprayed with 135 g Mo·ha-1 also had relatively high nitrogen metabolic enzyme activities and up-regulated transcript levels of nitrate uptake genes (NRT1.1; NRT2.1) and nitrate-responsive genes. Furthermore, there was a significantly lower NO3- concentration in the leaves and roots, a higher NH4+ concentration in leaves, and a higher glutamine/glutamate (Gln/Glu) concentration at 135 g Mo·ha-1. Seedlings sprayed with 202.5 g Mo·ha-1 showed the opposite trend. Taken together, these results suggest that a 135 g Mo·ha-1 application was optimal because it enhanced NO3- transport from the roots to the shoots and increased NUE by mediating nitrogen metabolic enzyme activities, nitrate transport, and nitrate assimilation gene activities.


Asunto(s)
Fragaria/efectos de los fármacos , Molibdeno/toxicidad , Nitratos/metabolismo , Plantones/efectos de los fármacos , Cobre/metabolismo , Fragaria/metabolismo , Hierro/metabolismo , Isótopos de Nitrógeno , Plantones/metabolismo , Selenio/metabolismo
17.
Biol Trace Elem Res ; 175(2): 331-338, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27339255

RESUMEN

The current study was conducted to investigate the effects of dietary zinc oxide (ZnO) on the antioxidant capacity, small intestine development, and jejunal gene expression in weaned piglets. Ninety-six 21-day-old piglets were randomly assigned to three dietary treatments. Each treatment had eight replicates with four piglets per replicate. The piglets were fed either control diet (control) or control diet supplemented with in-feed antibiotics (300 mg/kg chlortetracycline and 60 mg/kg colistin sulfate) or pharmacological doses of ZnO (3000 mg/kg). The experiment lasted 4 weeks. Blood samples were collected at days 14 and 28, while intestinal samples were harvested at day 28 of the experiment. Dietary high doses of ZnO supplementation significantly increased the body weight (BW) at day 14 and average daily gain (ADG) of days 1 to 14 in weaned piglets, when compared to control group (P < 0.05). The incidence of diarrhea of piglets fed ZnO-supplemented diets, at either days 1 to 14, days 14 to 28, or the overall experimental period, was significantly decreased in comparison with those in other groups (P < 0.05). Supplementation with ZnO increased the villus height of the duodenum and ileum in weaned piglets and decreased the crypt depth of the duodenum, when compared to the other groups (P < 0.05). Dietary ZnO supplementation decreased the malondialdehyde (MDA) concentration at either day 14 or day 28, but increased total superoxide dismutase (T-SOD) at day 14, when compared to that in the control (P < 0.05). ZnO supplementation upregulated the messenger RNA (mRNA) expression of zonula occludens-1 (ZO-1) and occludin in the jejunum mucosa of weaned piglets, compared to those in the control (P < 0.05). The pro-inflammatory cytokine interleukin-lß (IL-1ß) mRNA expression in the jejunum mucosa was downregulated in the ZnO-supplemented group, compared with the control (P < 0.05). Both in-feed antibiotics and ZnO supplementation decreased the mRNA expression of interferon-γ (IFN-γ), but increased the mRNA expression of transforming growth factor-ß (TGF-ß), in the jejunum mucosa of piglets, when compared to those in the control (P < 0.05). In summary, supplemental ZnO was effective on the prevention of post-weaning diarrhea (PWD) in weaned piglets and showed comparative growth-promoting effect on in-feed antibiotics, probably by the mechanism of improvement of the antioxidant capacity, restoration of intestinal barrier function and development, and modulation of immune functions.


Asunto(s)
Antioxidantes/metabolismo , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Yeyuno/metabolismo , Óxido de Zinc/farmacología , Animales , Porcinos
18.
Medicine (Baltimore) ; 95(35): e4389, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27583849

RESUMEN

Increasing evidence has shown that Chinese Herbal Medicine (CHM) has efficient therapeutic effects for advanced gastric adenocarcinoma, while the therapeutic mechanisms underlying this treatment remain unclear.In this study, the Kaplan-Meier method and Cox regression analysis were used to evaluate the survival benefit of CHM treatment, and correlation analysis was applied to identify the most effective components in the formulas. A network pharmacological approach was developed to decipher the potential therapeutic mechanisms of CHM.CHM treatment was an independent protective factor. The hazard ratio was 0.364 (95% CI 0.245-0.540; P < 0.001). The median survival time was 18 months for patients who received CHM treatment, while for patients without CHM treatment was decreased to 9 months (P < 0.001). Thirteen out of the total 204 herbs were significantly correlated with favorable survival outcomes (P < 0.05), likely representing the most effective components in these formulas. Bioinformatics analyses suggested that the simultaneous manipulation of multiple targets in proliferation pathways (such as epidermal growth factor receptor, fibroblast growth factor receptor 2, human epidermal growth factor receptor 2, proliferating cell nuclear antigen, and insulin like growth factor 2) and the process of cancer metastasis (collagen families, fibronectin 1 and matrix metalloproteinases families) might largely account for the mechanisms of the 13 herbs against gastric adenocarcinoma.A network pharmacology method was introduced to decipher the underlying mechanisms of CHM, which provides a good foundation for herbal research based on clinical data.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Carcinogénesis/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Biología Computacional , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Tasa de Supervivencia
19.
J Nutr Biochem ; 32: 163-70, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27142732

RESUMEN

Prenatal intake of choline has been reported to lead to enhanced cognitive function in offspring, but little is known about the effects on spatial learning deficits. The present study examined the effects of prenatal choline supplementation on developmental low-protein exposure and its potential mechanisms. Pregnant female rats were fed either a normal or low-protein diet containing sufficient choline (1.1g/kg choline chloride) or supplemented choline (5.0g/kg choline chloride) until delivery. The Barnes maze test was performed at postnatal days 31-37. Choline and its metabolites, the synaptic structural parameters of the CA1 region in the brain of the newborn rat, were measured. The Barnes maze test demonstrated that prenatal low-protein pups had significantly greater error scale values, hole deviation scores, strategy scores and spatial search strategy and had lesser random search strategy values than normal protein pups (all P<.05). These alterations were significantly reversed by choline supplementation. Choline supplementation increased the brain levels of choline, betaine, phosphatidylethanolamine and phosphatidylcholine of newborns by 51.35% (P<.05), 33.33% (P<.001), 28.68% (P<.01) and 23.58% (P<.05), respectively, compared with the LPD group. Prenatal choline supplementation reversed the increased width of the synaptic cleft (P<.05) and decreased the curvature of the synaptic interface (P<.05) induced by a low-protein diet. Prenatal choline supplementation could attenuate the spatial learning deficits caused by prenatal protein malnutrition by increasing brain choline, betaine and phospholipids and by influencing the hippocampus structure.


Asunto(s)
Colina/uso terapéutico , Dieta con Restricción de Proteínas/efectos adversos , Suplementos Dietéticos , Desarrollo Fetal , Discapacidades para el Aprendizaje/prevención & control , Fenómenos Fisiologicos Nutricionales Maternos , Aprendizaje Espacial , Animales , Animales Recién Nacidos , Conducta Animal , Región CA1 Hipocampal/crecimiento & desarrollo , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/ultraestructura , Femenino , Discapacidades para el Aprendizaje/etiología , Discapacidades para el Aprendizaje/patología , Aprendizaje por Laberinto , Microscopía Electrónica de Transmisión , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Neuronas/ultraestructura , Embarazo , Distribución Aleatoria , Ratas Sprague-Dawley , Conducta Espacial , Sinapsis/metabolismo , Sinapsis/patología , Sinapsis/ultraestructura
20.
Sci Rep ; 6: 24944, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27143508

RESUMEN

Traditional Chinese medicine (TCM) has been used to treat tumors for years and has been demonstrated to be effective. However, the underlying molecular mechanisms of herbs remain unclear. This study aims to ascertain molecular targets of herbs prolonging survival time of patients with advanced hepatocellular carcinoma (HCC) based on network pharmacology, and to establish a research method for accurate treatment of TCM. The survival benefit of TCM treatment with Chinese herbal medicine (CHM) was proved by Kaplan-Meier method and Cox regression analysis among 288 patients. The correlation between herbs and survival time was performed by bivariate correlation analysis. Network pharmacology method was utilized to construct the active ingredient-target networks of herbs that were responsible for the beneficial effects against HCC. Cox regression analysis showed CHM was an independent favorable prognostic factor. The median survival time was 13 months and the 5-year overall survival rates were 2.61% in the TCM group, while there were 6 months, 0 in the non-TCM group. Correlation analysis demonstrated that 8 herbs closely associated with prognosis. Network pharmacology analysis revealed that the 8 herbs regulated multiple HCC relative genes, among which the genes affected proliferation (KRAS, AKT2, MAPK), metastasis (SRC, MMP), angiogenesis (PTGS2) and apoptosis (CASP3) etc.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Plantas Medicinales , Perfilación de la Expresión Génica , Humanos , Pruebas de Farmacogenómica , Análisis de Supervivencia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA