Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Physiol ; 13: 996166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407000

RESUMEN

Chronic kidney disease (CKD) is a global public health problem that shortens lifespan primarily by increasing the risk of cardiovascular diseases. Trimethylamine-N-oxide (TMAO), a gut microbiota-derived toxin produced by metabolizing high-choline or carnitine foods, is associated with cardiovascular events in patients with CKD. Although the deleterious effect of TMAO on CKD-induced cardiac injury has been confirmed by various researches, the mechanisms remain unclear. Here, we tested the hypothesis that TMAO aggravates CKD-induced cardiac injury and explores the potential mechanism. CD1 mice underwent 5/6 nephrectomy to induce CKD, and then fed with a diet supplemented with choline (1.2% total) for 8 weeks. Serum TMAO levels were elevated in CKD mice compared with SHAM group, and higher TMAO levels were found in choline-supplemented CKD mice compared with CKD group. Dietary choline aggravated CKD-induced cardiac dysfunction, and reducing TMAO levels via medicinal charcoal tablets improved cardiac dysfunction. RNA-seq analysis revealed that dietary choline affected cardiac angiogenesis in CKD mice. Reduced cardiac capillary density and expressions of angiogenesis-related genes were observed in choline-treated CKD mice. Furthermore, dietary choline inhibited cardiac Hif-1α protein level in CKD mice, and Hif-1α stabilizer FG-4592 could improve cardiac angiogenesis and dysfunction in CKD mice on a high-choline diet. In conclusion, these data indicate that dietary choline, via gut microbe-generated TMAO, inhibits cardiac angiogenesis by reducing Hif-1α protein level, ultimately aggravates cardiac dysfunction in CKD mice.

2.
PLoS One ; 11(9): e0162873, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27636716

RESUMEN

Chronic kidney disease (CKD) is becoming a worldwide problem. However, current treatment options are limited. In the current study we showed that QiShenYiQi (QSYQ), a water-ethanol extract from several Chinese medicines, is a potent inhibitor of renal interstitial fibrosis. QSYQ inhibited transforming growth factor-ß1 (TGF-ß1)-responsive α-smooth muscle actin (α-SMA), collagen I, and fibronectin up-regulation in obstructive nephropathy and cultured cells. Administration of QSYQ also inhibited the established renal interstitial fibrosis in obstructive nephropathy. Interestingly, QSYQ selectively inhibited TGF-ß1-induced ß-catenin up-regulation and downstream gene transcription. Taken together, our study suggests that QSYQ selectively inhibits TGF-ß1-induced ß-catenin up-regulation and might have significant therapeutic potential for the treatment of renal fibrosis.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico , beta Catenina/metabolismo , Actinas/antagonistas & inhibidores , Animales , Fibrosis/tratamiento farmacológico , Masculino , Ratas , Ratas Sprague-Dawley , Transcripción Genética , Factor de Crecimiento Transformador beta1/fisiología
3.
J Am Soc Nephrol ; 26(8): 1827-38, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25392233

RESUMEN

TGF-ß1, via Smad-dependent or Smad-independent signaling, has a central role in the pathogenesis of renal fibrosis. This pathway has been recognized as a potential target for antifibrotic therapy. Here, we identified GQ5, a small molecular phenolic compound isolated from the dried resin of Toxicodendron vernicifluum, as a potent and selective inhibitor of TGF-ß1-induced Smad3 phosphorylation. In TGF-ß1-stimulated renal tubular epithelial cells and interstitial fibroblast cells, GQ5 inhibited the interaction of Smad3 with TGF-ß type I receptor (TßRI) by blocking binding of Smad3 to SARA, suppressed subsequent phosphorylation of Smad3, reduced nuclear translocation of Smad2, Smad3, and Smad4, and downregulated the transcription of major fibrotic genes such as α-smooth muscle actin (α-SMA), collagen I, and fibronectin. Notably, intraperitoneal administration of GQ5 in rats immediately after unilateral ureteral obstruction (UUO) selectively inhibited Smad3 phosphorylation in UUO kidneys, suppressed renal expression of α-SMA, collagen I, and fibronectin, and resulted in impressive renal protection after obstructive injury. Late administration of GQ5 also effectively attenuated fibrotic lesions in obstructive nephropathy. In conclusion, our results suggest that GQ5 hinders renal fibrosis in rats by selective inhibition of TGF-ß1-induced Smad3 phosphorylation.


Asunto(s)
Catecoles/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Nefroesclerosis/prevención & control , Proteína smad3/metabolismo , Toxicodendron/química , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Catecoles/aislamiento & purificación , Catecoles/farmacología , Línea Celular , Evaluación Preclínica de Medicamentos , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Masculino , Ratones Endogámicos C57BL , Nefroesclerosis/metabolismo , Fosforilación/efectos de los fármacos , Fitoterapia , Distribución Aleatoria , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/tratamiento farmacológico , Obstrucción Ureteral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA