Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 328: 118116, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548118

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Aristolochic acids (AAs) are naturally occurring nitro phenanthrene carboxylic acids primarily found in plants of the Aristolochiaceae family. Aristolochic acid D (AAD) is a major constituent in the roots and rhizomes of the Chinese herb Xixin (the roots and rhizomes of Asarum heterotropoides F. Schmidt), which is a key material for preparing a suite of marketed Chinese medicines. Structurally, AAD is nearly identical to the nephrotoxic aristolochic acid I (AAI), with an additional phenolic group at the C-6 site. Although the nephrotoxicity and metabolic pathways of AAI have been well-investigated, the metabolic pathway(s) of AAD in humans and the influence of AAD metabolism on its nephrotoxicity has not been investigated yet. AIM OF THE STUDY: To identify the major metabolites of AAD in human tissues and to characterize AAD O-glucuronidation kinetics in different enzyme sources, as well as to explore the influence of AAD O-glucuronidation on its nephrotoxicity. MATERIALS AND METHODS: The O-glucuronide of AAD was biosynthesized and its chemical structure was fully characterized by both 1H-NMR and 13C-NMR. Reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses were conducted to assess the crucial enzymes involved in AAD O-glucuronidation in humans. Docking simulations were performed to mimic the catalytic conformations of AAD in human UDP-glucuronosyltransferases (UGTs), while the predicted binding energies and distances between the deprotonated C-6 phenolic group of AAD and the glucuronyl moiety of UDPGA in each tested human UGT isoenzyme were measured. The mitochondrial membrane potentials (MMP) and reactive oxygen species (ROS) levels in HK-2 cells treated with either AAI, or AAD, or AAD O-glucuronide were tested, to elucidate the impact of O-glucuronidation on the nephrotoxicity of AAD. RESULTS: AAD could be rapidly metabolized in human liver and intestinal microsomes (HLM and HIM, respectively) to form a mono-glucuronide, which was purified and fully characterized as AAD-6-O-ß-D-glucuronide (AADG) by NMR. UGT1A1 was the predominant enzyme responsible for AAD-6-O-glucuronidation, while UGT1A9 contributed to a lesser extent. AAD-6-O-glucuronidation in HLM, HIM, UGT1A1 and UGT1A9 followed Michaelis-Menten kinetics, with the Km values of 4.27 µM, 9.05 µM, 3.87 µM, and 7.00 µM, respectively. Docking simulations suggested that AAD was accessible to the catalytic cavity of UGT1A1 or UGT1A9 and formed catalytic conformations. Further investigations showed that both AAI and AAD could trigger the elevated intracellular ROS levels and induce mitochondrial dysfunction and in HK-2 cells, but AADG was hardly to trigger ROS accumulation and mitochondrial dysfunction. CONCLUSION: Collectively, UGT1A-catalyzed AAD 6-O-glucuronidation represents a crucial detoxification pathway of this naturally occurring AAI analogs in humans, which is very different from that of AAI.


Asunto(s)
Ácidos Aristolóquicos , Enfermedades Mitocondriales , Humanos , Ácidos Aristolóquicos/toxicidad , Glucurónidos/metabolismo , Microsomas Hepáticos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glucuronosiltransferasa/metabolismo , Cinética , Catálisis , Uridina Difosfato/metabolismo
2.
Int J Biol Macromol ; 267(Pt 1): 131150, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556236

RESUMEN

Gut microbial ß-glucuronidases (gmß-GUS) played crucial roles in regulating a variety of endogenous substances and xenobiotics on the circulating level, thus had been recognized as key modulators of drug toxicity and human diseases. Inhibition or inactivation of gmß-GUS enzymes has become a promising therapeutic strategy to alleviate drug-induced intestinal toxicity. Herein, the Rhodiola crenulata extract (RCE) was found with potent and broad-spectrum inhibition on multiple gmß-GUS enzymes. Subsequently, the anti-gmß-GUS activities of the major constituents in RCE were tested and the results showed that 1,2,3,4,6-penta-O-galloyl-ß-d-glucopyranose (PGG) acted as a strong and broad-spectrum inhibitor on multiple gmß-GUS (including EcGUS, CpGUS, SaGUS, and EeGUS). Inhibition kinetic assays demonstrated that PGG effectively inhibited four gmß-GUS in a non-competitive manner, with the Ki values ranging from 0.12 µM to 1.29 µM. Docking simulations showed that PGG could tightly bound to the non-catalytic sites of various gmß-GUS, mainly via hydrogen bonding and aromatic interactions. It was also found that PGG could strongly inhibit the total gmß-GUS activity in mice feces, with the IC50 value of 1.24 µM. Collectively, our findings revealed that RCE and its constituent PGG could strongly inhibit multiple gmß-GUS enzymes, suggesting that RCE and PGG could be used for alleviating gmß-GUS associated enterotoxicity.


Asunto(s)
Inhibidores Enzimáticos , Microbioma Gastrointestinal , Simulación del Acoplamiento Molecular , Rhodiola , Rhodiola/química , Animales , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Medicina Tradicional Tibetana , Cinética , Masculino
3.
J Med Virol ; 95(11): e29208, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37947293

RESUMEN

The main proteases (Mpro ) are highly conserved cysteine-rich proteins that can be covalently modified by numerous natural and synthetic compounds. Herein, we constructed an integrative approach to efficiently discover covalent inhibitors of Mpro from complex herbal matrices. This work begins with biological screening of 60 clinically used antiviral herbal medicines, among which Lonicera japonica Flos (LJF) demonstrated the strongest anti-Mpro effect (IC50 = 37.82 µg/mL). Mass spectrometry (MS)-based chemical analysis and chemoproteomic profiling revealed that LJF extract contains at least 50 constituents, of which 22 exhibited the capability to covalently modify Mpro . We subsequently verified the anti-Mpro effects of these covalent binders. Gallic acid and quercetin were found to potently inhibit severe acute respiratory syndrome coronavirus 2 Mpro in dose- and time- dependent manners, with the IC50 values below 10 µM. The inactivation kinetics, binding affinity and binding mode of gallic acid and quercetin were further characterized by fluorescence resonance energy transfer, surface plasmon resonance, and covalent docking simulations. Overall, this study established a practical approach for efficiently discovering the covalent inhibitors of Mpro from herbal medicines by integrating target-based high-throughput screening and MS-based assays, which would greatly facilitate the discovery of key antiviral constituents from medicinal plants.


Asunto(s)
COVID-19 , Plantas Medicinales , Humanos , SARS-CoV-2 , Ensayos Analíticos de Alto Rendimiento , Quercetina/farmacología , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Extractos Vegetales/farmacología , Antivirales/farmacología , Antivirales/química , Ácido Gálico/farmacología , Simulación del Acoplamiento Molecular
4.
Phytomedicine ; 114: 154796, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37037086

RESUMEN

BACKGROUND: The 3C-like proteases (3CLpros) are cysteine-rich homodimeric proteins and can be covalently modified by numerous natural and synthetic compounds, which in turn, block the proteolytic activity or the formation of enzymatically active dimeric forms. Although herbal medicines have been widely used to treat COVID-19, identification of the key herbal constituents that can covalently modify the 3CLpros in ß-coronaviruses (CoVs) remains a big challenge. AIMS: To construct a comprehensive approach for efficient discovering the covalent SARS-CoV-2 3CLpro inhibitors from herbal medicines. To decipher the key anti-SARS-CoV-2 3CLpro constituents in Ginkgo biloba extract 50 (GBE50) and to study their anti-SARS-CoV-2 3CLpro mechanisms. METHODS: SARS-CoV-2 3CLpro inhibition assay including time-dependent inhibition assays and inactivation kinetic analyses were conducted using a fluorescence-based biochemical assay. The constituents in GBE50 were analyzed by UHPLC-Q-Exactive Orbitrap HRMS. The peptides modified by herbal constituents were characterized by using nanoLC-MS/MS. RESULTS: Following testing the anti-SARS-CoV-2 3CLpro effects of 104 herbal medicines, it was found that Ginkgo biloba extract 50 (GBE50) potently inhibited SARS-CoV-2 3CLpro in dose- and time-dependent manners. A total of 38 constituents were identified from GBE50 by UHPLC-Q-Exactive Orbitrap HRMS, while 26 peptides modified by 18 constituents were identified by chemoproteomic profiling. The anti-SARS-CoV-2 3CLpro effects of 18 identified covalent inhibitors were then validated by performing time-dependent inhibition assays. The results clearly demonstrated that most tested constituents showed time-dependent inhibition on SARS-CoV-2 3CLpro, while gallocatechin and sciadopitysin displayed the most potent anti-SARS-CoV-2 3CLpro effects. CONCLUSION: Collectively, GBE50 and some constituents in this herbal product could strongly inhibit SARS-CoV-2 3CLpro in dose- and time-dependent manner. Gallocatechin and sciadopitysin were identified as potent SARS-CoV-2 3CLpro inhibitors, which offers promising lead compounds for the development of novel anti-SARS-CoV-2 drugs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antivirales/farmacología , Péptidos , Extractos Vegetales , Espectrometría de Masas en Tándem
5.
Front Pharmacol ; 13: 815235, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35264954

RESUMEN

Human UDP-glucuronosyltransferase 1A1 (hUGT1A1) is one of the most essential phase II enzymes in humans. Dysfunction or strong inhibition of hUGT1A1 may result in hyperbilirubinaemia and clinically relevant drug/herb-drug interactions (DDIs/HDIs). Recently, a high-throughput fluorescence-based assay was constructed by us to find the compounds/herbal extracts with strong inhibition against intracellular hUGT1A1. Following screening of over one hundred of herbal products, the extract of Ginkgo biloba leaves (GBL) displayed the most potent hUGT1A1 inhibition in HeLa-UGT1A1 cells (Hela cells overexpressed hUGT1A1). Further investigations demonstrated that four biflavones including bilobetin, isoginkgetin, sciadopitysin and ginkgetin, are key constituents responsible for hUGT1A1 inhibition in living cells. These biflavones potently inhibit hUGT1A1 in both human liver microsomes (HLM) and living cells, with the IC50 values ranging from 0.075 to 0.41 µM in living cells. Inhibition kinetic analyses and docking simulations suggested that four tested biflavones potently inhibit hUGT1A1-catalyzed NHPN-O-glucuronidation in HLM via a mixed inhibition manner, showing the K i values ranging from 0.07 to 0.74 µM. Collectively, our findings uncover the key constituents in GBL responsible for hUGT1A1 inhibition and decipher their inhibitory mechanisms against hUGT1A1, which will be very helpful for guiding the rational use of GBL-related herbal products in clinical settings.

6.
Basic Clin Pharmacol Toxicol ; 129(6): 437-449, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34478607

RESUMEN

Methylophiopogonanone A (MOA) is an abundant homoisoflavonoid in the Chinese herb Ophiopogonis Radix. Recent investigations revealed that MOA inhibited several human cytochrome P450 enzymes (CYPs) and stimulated OATP1B1. However, the inhibitory effects of MOA on phase II drug-metabolizing enzymes, such as human UDP-glucuronosyltransferases (hUGTs), have not been well investigated. Herein, the inhibition potentials of MOA on hUGTs were assessed. The results clearly demonstrated that MOA dose-dependently inhibited all tested hUGTs including UGT1A1 (IC50 = 1.23 µM), one of the most important detoxification enzymes in humans. Further investigations showed that MOA strongly inhibited UGT1A1-catalysed NHPH-O-glucuronidation in a range of biological settings including hUGT1A1, human liver microsomes (HLM) and HeLa cells overexpressing UGT1A1. Inhibition kinetic analyses demonstrated that MOA competitively inhibited UGT1A1-catalysed NHPH-O-glucuronidation in both hUGT1A1 and HLM, with Ki values of 0.52 and 1.22 µM, respectively. Collectively, our findings expanded knowledge of the interactions between MOA and human drug-metabolizing enzymes, which would be very helpful for guiding the use of MOA-related herbal products in clinical settings.


Asunto(s)
Benzodioxoles/farmacología , Inhibidores Enzimáticos/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Interacciones de Hierba-Droga , Isoflavonas/farmacología , Benzodioxoles/administración & dosificación , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/administración & dosificación , Células HeLa , Humanos , Concentración 50 Inhibidora , Isoflavonas/administración & dosificación , Microsomas Hepáticos/enzimología
7.
Int J Biol Macromol ; 187: 976-987, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34333006

RESUMEN

Coronavirus 3C-like protease (3CLpro) is a crucial target for treating coronavirus diseases including COVID-19. Our preliminary screening showed that Ampelopsis grossedentata extract (AGE) displayed potent SARS-CoV-2-3CLpro inhibitory activity, but the key constituents with SARS-CoV-2-3CLpro inhibitory effect and their mechanisms were unrevealed. Herein, a practical strategy via integrating bioactivity-guided fractionation and purification, mass spectrometry-based peptide profiling and time-dependent biochemical assay, was applied to identify the crucial constituents in AGE and to uncover their inhibitory mechanisms. The results demonstrated that the flavonoid-rich fractions (10-17.5 min) displayed strong SARS-CoV-2-3CLpro inhibitory activities, while the constituents in these fractions were isolated and their SARS-CoV-2-3CLpro inhibitory activities were investigated. Among all isolated flavonoids, dihydromyricetin, isodihydromyricetin and myricetin strongly inhibited SARS-CoV-2 3CLpro in a time-dependent manner. Further investigations demonstrated that myricetin could covalently bind on SARS-CoV-2 3CLpro at Cys300 and Cys44, while dihydromyricetin and isodihydromyricetin covalently bound at Cys300. Covalent docking coupling with molecular dynamics simulations showed the detailed interactions between the orthoquinone form of myricetin and two covalent binding sites (surrounding Cys300 and Cys44) of SARS-CoV-2 3CLpro. Collectively, the flavonoids in AGE strongly and time-dependently inhibit SARS-CoV-2 3CLpro, while the newly identified SARS-CoV-2 3CLpro inhibitors in AGE offer promising lead compounds for developing novel antiviral agents.


Asunto(s)
Proteasas Virales 3C/química , Proteasas Virales 3C/metabolismo , Ampelopsis/química , Antivirales/farmacología , Flavonoides/farmacología , SARS-CoV-2/enzimología , Antivirales/química , Sitios de Unión/efectos de los fármacos , Cisteína/metabolismo , Flavonoides/química , Flavonoles/química , Flavonoles/farmacología , Espectrometría de Masas , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Unión Proteica/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos
8.
Fitoterapia ; 152: 104909, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33894315

RESUMEN

3-Chymotrypsin-like protease (3CLpro) is a virally encoded main proteinase that is pivotal for the viral replication across a broad spectrum of coronaviruses. This study aims to discover the naturally occurring SARS-CoV-2 3CLpro inhibitors from herbal constituents, as well as to investigate the inhibitory mechanism of the newly identified efficacious SARS-CoV-2 3CLpro inhibitors. Following screening of the inhibitory potentials of eighty herbal products against SARS-CoV-2 3CLpro, Ginkgo biloba leaves extract (GBLE) was found with the most potent SARS-CoV-2 3CLpro inhibition activity (IC50 = 6.68 µg/mL). Inhibition assays demonstrated that the ginkgolic acids (GAs) and the bioflavones isolated from GBLE displayed relatively strong SARS-CoV-2 3CLpro inhibition activities (IC50 < 10 µM). Among all tested constituents, GA C15:0, GA C17:1 and sciadopitysin displayed potent 3CLpro inhibition activities, with IC50 values of less than 2 µM. Further inhibition kinetic studies and docking simulations clearly demonstrated that two GAs and sciadopitysin strongly inhibit SARS-CoV-2 3CLprovia a reversible and mixed inhibition manner. Collectively, this study found that both GBLE and the major constituents in this herbal product exhibit strong SARS-CoV-2 3CLpro inhibition activities, which offer several promising leading compounds for developing novel anti-COVID-19 medications via targeting on 3CLpro.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Inhibidores de Proteasa de Coronavirus/farmacología , Ginkgo biloba/química , Extractos Vegetales/farmacología , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antivirales/uso terapéutico , Biflavonoides/farmacología , Biflavonoides/uso terapéutico , Inhibidores de Proteasa de Coronavirus/uso terapéutico , Flavonas/farmacología , Flavonas/uso terapéutico , Humanos , Estructura Molecular , Fitoterapia , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , SARS-CoV-2/enzimología , Salicilatos/farmacología , Salicilatos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA