Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nat Prod ; 84(10): 2709-2716, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34644092

RESUMEN

Characterization of cryptic biosynthetic gene clusters (BGCs) from microbial genomes has been proven to be a powerful approach to the discovery of new natural products. However, such a genome mining approach to the discovery of bioactive plant metabolites has been muted. The plant BGCs characterized to date encode pathways for antibiotics important in plant defense against microbial pathogens, providing a means to discover such phytoalexins by mining plant genomes. Here is reported the discovery and characterization of a minimal BGC from the medicinal plant Catharanthus roseus, consisting of an adjacent pair of genes encoding a terpene synthase (CrTPS18) and cytochrome P450 (CYP71D349). These two enzymes act sequentially, with CrTPS18 acting as a sesquiterpene synthase, producing 5-epi-jinkoheremol (1), which CYP71D349 further hydroxylates to debneyol (2). Infection studies with maize revealed that 1 and 2 exhibit more potent fungicidal activity than validamycin. Accordingly, this study demonstrates that characterization of such cryptic plant BGCs is a promising strategy for the discovery of potential agrochemical leads. Moreover, despite the observed absence of 1 and 2 in C. roseus, the observed transcriptional regulation is consistent with their differential fungicidal activity, suggesting that such conditional coexpression may be sufficient to drive BGC assembly in plants.


Asunto(s)
Catharanthus/genética , Fungicidas Industriales/química , Familia de Multigenes , Sesquiterpenos/química , Transferasas Alquil y Aril/genética , Catharanthus/química , Sistema Enzimático del Citocromo P-450/genética , Genoma de Planta , Enfermedades de las Plantas/prevención & control , Plantas Medicinales/química , Plantas Medicinales/genética , Zea mays/microbiología , Fitoalexinas
2.
Chin J Nat Med ; 19(9): 666-674, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34561077

RESUMEN

Plant-derived labdane-related diterpenoids (LRDs) represent a large group of terpenoids. LRDs possess either a labdane-type bicyclic core structure or more complex ring systems derived from labdane-type skeletons, such as abietane, pimarane, kaurane, etc. Due to their various pharmaceutical activities and unique properties, many of LRDs have been widely used in pharmaceutical, food and perfume industries. Biosynthesis of various LRDs has been extensively studied, leading to characterization of a large number of new biosynthetic enzymes. The biosynthetic pathways of important LRDs and the relevant enzymes (especially diterpene synthases and cytochrome P450 enzymes) were summarized in this review.


Asunto(s)
Diterpenos de Tipo Kaurano , Diterpenos , Vías Biosintéticas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Plantas
3.
J Ethnopharmacol ; 150(1): 187-95, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24001891

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Our previous study showed that the proteoglycan P1 from Phellinus linteus (Mesima) exhibits significant anti-tumor activity against human hepatocellular carcinoma cells (HepG2); however, its molecular mechanism remains unknown. This study aims to provide insights into the mechanism of the anti-tumor activity of P1 against HepG2 cells. METHODS: We examined the effects of P1 on HepG2 cell proliferation in vitro and in vivo. Flow cytometry was used to analyze the cell cycle distribution and apoptosis. Proteomic analysis, real-time (RT)-PCR, and Western blot were carried out to observe the expression of several cell cycle control proteins in HepG2 cells. RESULTS: Both the volume and the weight of solid tumors were significantly decreased in P1-treated mice (200mg/kg) compared with the control. The HepG2 cells in the P1-treated tumors were significantly decreased, irregularly shaped, and smaller. P1 slightly increased the body weight of the tumor-bearing mice, which indicates that P1 is nontoxic to mammals at 200mg/kg. P1 also caused a significant dose-dependent increase in S phase arrest, but no apoptosis was observed in HepG2 cells. The results of the proteomic analysis, RT-PCR, and Western blot analysis showed that significantly downregulated expression of calreticulin, cyclin D1, cyclin E, and CDK2 and upregulated expression of P27 kip1 and cyclin A in the P1-treated HepG2 cells (200 µg/ml). CONCLUSION: These results suggest that calreticulin expression and the P27 kip1-cyclin A/D1/E-CDK2 pathway were involved in P1-induced S-phase cell cycle arrest in HepG2 cells.


Asunto(s)
Antineoplásicos/farmacología , Basidiomycota , Polisacáridos Fúngicos/farmacología , Animales , Antineoplásicos/uso terapéutico , Calreticulina/metabolismo , Proliferación Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Ciclinas/metabolismo , Femenino , Polisacáridos Fúngicos/uso terapéutico , Células Hep G2 , Humanos , Ratones , Ratones Desnudos , Proteómica , Fase S/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA