Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(2): 2198-2213, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38055174

RESUMEN

This study investigated the concentration and fractionation of phosphorus (P) using sequential P extraction and their influencing factors by introducing the PLS-SEM model (partial least squares structural equation model) along this continuum from the Qinhuai River. The results showed that the average concentrations of inorganic P (IP) occurred in the following order: urban sediment (1499.1 mg/kg) > suburban sediment (846.1-911.9 mg/kg) > rural sediment (661.1 mg/kg) > natural sediment (179.9 mg/kg), and makes up to 53.9-87.1% of total P (TP). The same as the pattern of IP, OP nearly increased dramatically with increasing the urbanization gradient. This spatial heterogenicity of P along a river was attributed mainly to land use patterns and environmental factors (relative contribution affecting the P fractions: sediment nutrients > metals > grain size). In addition, the highest values of TP (2876.5 mg/kg), BAP (biologically active P, avg, 675.7 mg/kg), and PPI (P pollution index, ≥ 2.0) were found in urban sediments among four regions, indicating a higher environmental risk of P release, which may increase the risk of eutrophication in overlying water bodies. Collectively, this work improves the understanding of the spatial dynamics of P in the natural-rural-urban river sediment continuum, highlights the need to control P pollution in urban sediments, and provides a scientific basis for the future usage and disposal of P in sediments.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Ríos/química , Fósforo/análisis , Sedimentos Geológicos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , China , Medición de Riesgo
2.
Environ Pollut ; 342: 123064, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042475

RESUMEN

Peroxymonosulfate-mediated advanced oxidation processes (PMS-AOPs) degrading organic pollutants (Tetracycline (TC) as an example) in water with singlet oxygen (1O2) as the main reactive oxygen has received more and more attention. However, the generation mechanism of 1O2 is still unclear. Consequently, this study investigates the 1O2 formation mechanism during the activated PMS process using a nitrogen-copper-loaded carbon-based material (Cu0/Cu2O/CuO@N-C), synthesized by thermally decomposing organobase-modified HKUST-1 via a one-pot method. It was discovered that incorporating an organobase (Benzylamine) into the metal organic framework (MOF) precursor directs the MOF's self-assembly process and supplements its nitrogen content. This modification modulates the Nx-Cu-Oy active site formation in the material, selectively producing 1O2. Additionally, 1O2 was identified as the dominant reactive oxygen species in the Cu0/Cu2O/CuO@N-C-PMS system, contributing to TC degradation with a rate of 70.82%. The TC degradation efficiency remained high in the pH range of 3-11 and sustained its efficacy after five consecutive uses. Finally, based on the intermediates of TC degradation, three possible degradation pathways were postulated, and a reduction in the ecotoxicity of the degradation products was predicted. This work presents a novel and general strategy for constructing nitrogen-copper-loaded carbon-based materials for use in PMS-AOPs.


Asunto(s)
Cobre , Contaminantes Ambientales , Peróxidos/química , Tetraciclina/química , Antibacterianos , Oxígeno , Carbono , Nitrógeno
3.
Sci Total Environ ; 847: 157405, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35850354

RESUMEN

In the past decade, the sulfate radical-based advanced oxidation processes (SR-AOPs) have been increasingly investigated because of their excellent performance and ubiquity in the degradation of emerging contaminants. Generally, sulfate radicals can be generated by activating peroxodisulfate (PDS) or peroxymonosulfate (PMS). To date, spinel ferrites (SF) materials have been greatly favored by researchers in activating PMS/PDS for their capability and unique superiorities. This article reviewed the recent advances in various pure SF, modified SF, and SF composites for PDS/PMS activation. In addition, synthesis methods, mechanisms, and potential applications of SF-based SR-AOPs were also examined and discussed in detail. Finally, we present future research directions and challenges for the application of SF materials in SR-AOPs.


Asunto(s)
Contaminantes Químicos del Agua , Óxido de Aluminio , Compuestos Férricos , Óxido de Magnesio , Oxidación-Reducción , Peróxidos , Sulfatos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA