Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 26: 55-61, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28257665

RESUMEN

BACKGROUND: Armillaria mellea (A. mellea) is a traditional Chinese medicinal and edible mushroom, which is proved to possess a lot of biological activities, including anti-oxidation, immunopotentiation, anti-vertigo and anti-aging activities. However, little information is available in regard to its neuroprotection activity in inflammation-mediated neurodegenerative diseases. PURPOSE: We have found that A. mellea has an anti-inflammatory activity in LPS-induced RAW264.7 cells in our previous study. The objective of this study is to investigate the anti-neuroinflammatory mechanism of a bioassay-guided fractionation (Fr.2) and its active components/compounds. METHODS: Compounds were isolated by preparative high performance liquid chromatography (pre-HPLC) and their structures were established by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopic analyses. The anti-neuroinflammatory effect of Fr.2 and each compounds were investigated in lipopolysaccharide (LPS)-stimulated murine microglia cell lineBV-2. RESULTS: We demonstrated that Fr.2 significantly decreased the production of inflammation mediator nitric oxide (NO) and inflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1beta (IL-1ß) in a dose-dependent manner (10, 30, 100µg/ml). In addition, Fr.2 markedly down-regulated the phosphorylation levels of nuclear factor kappa B p65 (NF-κB p65), inhibitory κB-α (IκB-α) and c-Jun N-terminal kinases (JNKs) pathways. Sevens compounds were isolated from Fr.2, among them, three compounds, 5-hydroxymethylfurfural (CP1), vanillic acid (CP4) and syringate (CP5) were reported for the first time in A. mellea. NO and inflammatory cytokines (TNF-α, IL-6, IL-1ß) secretion indicated that daidzein (CP6) and genistein (CP7) showed a more outstanding anti-inflammation potential at non-toxic concentrations (10, 30, 100µM) than the other five compounds. CONCLUSIONS: In conclusion, Fr.2 may have therapeutic potential for neurodegenerative diseases by inhibiting inflammatory mediators and suppress inflammation pathway in activated microglia. Daidzein and genistein may serve as the effective anti-inflammation compounds of Fr.2.


Asunto(s)
Acetatos/farmacología , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Lipopolisacáridos/efectos adversos , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Animales , Armillaria/química , Medicamentos Herbarios Chinos/farmacología , Ratones
2.
Int J Med Mushrooms ; 16(4): 319-25, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25271860

RESUMEN

Medicinal mushrooms have been essential components of traditional Chinese herbal medicines for thousands of years, and they protect against diverse health-related conditions. The components responsible for their anti-inflammatory activity have yet to be fully studied. This study investigates the anti-inflammatory activity of n-hexane, chloroform, ethyl acetate, and methanol extracts of mycelia in submerged culture from 5 commercially available medicinal mushrooms, namely Cephalosporium sinensis, Cordyceps mortierella, Hericium erinaceus, Ganoderma lucidum, and Armillaria mellea. MTT colorimetric assay was applied to measure the cytotoxic effects of different extracts. Their anti-inflammatory activities were evaluated via inhibition against production of lipopolysaccharide (LPS)-induced nitric oxide (NO) in murine macrophage-like cell line RAW264.7 cells. Of the 20 extracts, n-hexane, chloroform, ethyl acetate, and methanol extracts from C. sinensis, C. mortierella, and G. lucidum; chloroform extracts from H. erinaceus and A. mellea; and ethyl acetate extracts from A. mellea at nontoxic concentrations (<300 µg/mL) dose-dependently inhibited LPS-induced NO production. Among them, the chloroform extract from G. lucidum was the most effective inhibitor, with the lowest half maximal inhibitory concentration (64.09 ± 6.29 µg/mL) of the LPS-induced NO production. These results indicate that extracts from medicinal mushrooms exhibited anti-inflammatory activity that might be attributable to the inhibition of NO generation and can therefore be considered a useful therapeutic and preventive approach to various inflammation-related diseases.


Asunto(s)
Agaricales/química , Antiinflamatorios/aislamiento & purificación , Macrófagos/efectos de los fármacos , Animales , Antiinflamatorios/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Lipopolisacáridos/inmunología , Macrófagos/química , Macrófagos/fisiología , Ratones , Micelio/química , Óxido Nítrico/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA