Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
iScience ; 26(10): 107796, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37720083

RESUMEN

The underlying mechanisms governing parturition remain largely elusive due to limited knowledge of parturition preparation and initiation. Accumulated evidences indicate that maternal decidua plays a critical role in parturition initiation. To comprehensively decrypt the cell heterogeneity in decidua approaching parturition, we investigate the roles of various cell types in mouse decidua process and reveal previously unappreciated insights in parturition initiation utilizing single-cell RNA sequencing (scRNA-seq). We enumerate the cell types in decidua and identity five different stromal cells populations and one decidualized stromal cells. Furthermore, our study unravels that stromal cells prepare for parturition by regulating local retinol acid (RA) synthesis. RA supplement decreases expression of extracellular matrix-related genes in vitro and accelerates the timing of parturition in vivo. Collectively, the discovery of contribution of stromal cells in parturition expands current knowledge about parturition and opens up avenues for the intervention of preterm birth (PTB).

2.
Medicine (Baltimore) ; 102(12): e33063, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36961195

RESUMEN

Astragalus membranaceus (AM) is a traditional Chinese herbal medicine extensively utilized in vascular cognitive impairment (VCI) treatment. However, due to the complex components of AM, its exact molecular mechanism remains unclear. Therefore, this study investigated the target and molecular mechanism of AM to treat VCI based on network pharmacology and molecular docking. Firstly, the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, STITCH, and SwissTargetPrediction were utilized to gather the primary active ingredients of AM. The potential therapeutic targets of VCI were collected through GeneCards, OMIM, and DisGeNET databases. Secondly, the protein-protein interaction network was built using the STRING database. The enrichment analysis of gene ontology and the Kyoto Encyclopedia of Genes and Genome pathways was carried out in the R language. Finally, The network topology calculation of Cytoscape software was combined with module analysis to predict the binding properties of its active ingredients and targets. Twenty effective compounds and 733 targets were screened from AM, among which 158 targets were seen as possible targets of AM to treat VCI. MAPK3 and MMP9 were the critical targets of AM intervention in VCI. The crucial pathways include PI3K/Akt, MAPK, Rap1, and Ras signaling pathways. Besides, calycosin and quercetin might be the potential active compounds of AM for VCI treatment. AM intervenes in VCI through a multi-ingredient, multi-target, and multi-pathway coordination mechanism. These findings provide a foundation for a deeper understanding of the molecular mechanisms by which AM is effective in treating VCI.


Asunto(s)
Disfunción Cognitiva , Medicamentos Herbarios Chinos , Humanos , Simulación del Acoplamiento Molecular , Astragalus propinquus , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Disfunción Cognitiva/tratamiento farmacológico , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA