Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Hazard Mater ; 466: 133502, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266586

RESUMEN

Uranium-stressed soil caused by nuclear industry development and energy acquisition have attracted extensive attentions for a long time. This study investigated the effects of biochar application with different pyrolysis temperatures (300 â„ƒ, 500 â„ƒ and 700 â„ƒ) on remediation of uranium-stressed soil. The results showed that higher pyrolysis temperature (700 â„ƒ) was benefit for ryegrass growing and caused a lower uranium accumulation in plants. At the same time, uranium immobilization was more effective at higher biochar pyrolysis temperature. Careful investigations indicated that activities of soil urease and sucrase were promoted, and bacterial diversity was strengthened in C700 group, which may contribute to uranium immobilization. The biochar application could activate metabolic of lipids and amino acids, organic acids and derivatives, and organic oxygen compounds. Nicotinate and nicotinamide metabolism, and Benzoxazinoid biosynthesis were unique metabolic pathways in the C700 group, which could enhance the uranium tolerance from different perspectives. Based on these results, we recommend to use biochar with 700 °C pyrolysis temperature when processing remediation of uranium-stressed soil. This study will facilitate the implementation of biochar screening and provide theoretical helps for remediation of uranium-stressed soil.


Asunto(s)
Contaminantes del Suelo , Uranio , Suelo/química , Temperatura , Pirólisis , Carbón Orgánico/química , Contaminantes del Suelo/química
2.
J Environ Radioact ; 258: 107090, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36565664

RESUMEN

As a radioactive heavy metal element with a long half-life, uranium causes environmental pollution when it enters the surrounding soil. This study analyzed the changes about soil enzyme activity, non-targeted metabolomics, microbial community structure and function microbial community structure and function to assess the differences in the effects of uranium stress on rhizosphere and non-rhizosphere soil. Results showed that uranium stress significantly inhibited the activities of urease and sucrase in rhizosphere and non-rhizosphere, which had less effect on rhizosphere. Compare to the non-rhizosphere soil, the uranium stress induced the production of gibberellin A1, to promoted several metabolic pathways, such as nitrogen and PTS (Phosphotransferase system) metabolic in rhizosphere soil. The species and abundance of Aspergillus, Acidobacter, and Synechococcus in both rhizosphere and non-rhizosphere soil were decreased by uranium stress. However, the microorganisms in rhizosphere soil were less inhibited according to the soil metabolism and microbial network map analysis. Furthermore, the Chujaibacter in rhizosphere soil under uranium stress was found significantly positively correlated with lipid and organic oxygen compounds. Overall, the results indicated that ryegrass roots significantly alleviated the effects of uranium stress on soil microbial activity and population abundances, thus playing a protective role. The study also provided a theoretical basis for in-depth understanding of the biological effects, prevention and control mechanisms of uranium-contaminated soil.


Asunto(s)
Lolium , Monitoreo de Radiación , Contaminantes del Suelo , Uranio , Suelo/química , ADN Ribosómico , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Microbiología del Suelo
3.
Sci Total Environ ; 842: 156916, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35753449

RESUMEN

An environment-friendly, low-cost and efficient kaolin aerogel adsorbent (named as KLA) was synthesized via a freeze-drying-calcination method to solve the defect of low uranium removal rate for kaolin (KL). The removal rate of uranium on KLA reached 90.6 %, which was much higher than that of KL (69.2 %) (C0 = 10 mg L-1, t = 24 h, pH = 5.0, T = 298 K and m/V = 1.0 g L-1). The uranium removal behavior on KLA was satisfied with Pseudo-second-order and Langmuir model, which meant that the uranium ions were immobilized on the surface of KLA via chemical reaction. Meanwhile, high temperature was in favor of the removal of uranium on KLA, indicating that the removal process was a spontaneous endothermic reaction. Compared with KL, KLA also presented better cycle ability and its removal rate of uranium was up to 80.5 % after three cycles, which was still higher than that of KL at the first cycle (74.5 %). On basis of the results of SEM, XRD, FT-IR and XPS, it could be concluded that uranium ions were adsorbed by KLA via complexation. Hence, KLA could be regarded as a feasible candidate for the removal of uranium from aqueous solution.


Asunto(s)
Uranio , Adsorción , Concentración de Iones de Hidrógeno , Iones , Caolín , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Uranio/análisis , Aguas Residuales
4.
Sci Total Environ ; 819: 153145, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35038520

RESUMEN

In this work, Bi2O3 doped horse manure-derived biochar was obtained by carbonizing the H2O2-modified horse manure loaded with bismuth nitrate under nitrogen atmosphere at 500 °C. The results showed that there was a sharp response between the as-prepared bismuth impregnated biochar and uranium(VI) species in solution, which resulted in a short equilibrium time (<80 min), a fast adsorption rate (about 5.0 mg/(g·min)), a high removal efficiency (93.9%) and a large adsorption capacity (516.5 mg/g) (T = 298 K, pH = 4, Ci = 10 mg/L and m/V = 0.1 g/L). Besides, the removal behavior of the bismuth impregnated biochar for uranium(VI) did not depend on the interfering ions and ion strength, except Al3+, Ca2+, CO32- and PO43-. These results indicated that the modified biochar might possess the potential of remediating the actual uranium(VI)-containing wastewater. Moreover, the interaction mechanism between Bi2O3 doped biochar and uranium(VI) species was further explored. The results demonstrated that the enrichment of uranium(VI) on the surface of the as-prepared biochar was controlled by various factors, such as surface complexation, ion exchange, electrostatic attraction, precipitation and reduction, which facilitated the adsorption of uranium(VI) on the bismuth impregnated biochar.


Asunto(s)
Uranio , Adsorción , Animales , Bismuto , Carbón Orgánico , Caballos , Peróxido de Hidrógeno , Uranio/análisis
5.
J Hazard Mater ; 423(Pt B): 127184, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34536844

RESUMEN

In order to protect environment and save uranium resources, it was necessary to find a highly efficient adsorbent for uranium recovery from wastewater. In this work, we used a freeze-drying-calcination method to synthesize HAP aerogel to effectively remove uranium. Compared with commercially available nano-hydroxyapatite, HAP aerogel presented better adsorption performance. This was because the as-prepared HAP aerogel presented continuous porous structure, which could provide more active sites for the adsorption to uranium. The uranium removal efficiency of HAP aerogel arrived 99.4% within 10 min and the maximum adsorption capacity was up to 2087.6 mg g-1 at pH = 4.0 and 298 K. In addition, the immobilization of uranium on HAP aerogel was chemisorption, which was probably due to adsorption, dissolution-precipitation and ions exchange. These results indicated that the as-prepared HAP aerogel could be widely used as a high efficiency and potential adsorbent for the treatment of uranium-containing wastewater in the future.


Asunto(s)
Uranio , Adsorción , Durapatita , Iones , Porosidad
6.
J Hazard Mater ; 423(Pt B): 127190, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34844340

RESUMEN

In this work, three kinds of biochars (PMBC-H2O, PMBC-PP and PMBC-HP) with excellent adsorption performance were obtained by carbonizing pig manure pre-treated with different agents. These biochars had the ordered mesoporous structures and possessed abundant active functional groups on their surface. The adsorption behaviors of the biochars towards UVI under various conditions were evaluated by batch experiment. The results showed that KMnO4 and H2O2 could enormously improve the adsorption performance of PMBC to UVI. After KMnO4 and H2O2 pretreatment, the maximum adsorption capacities of PMBC-PP (979.3 mg/g) and PMBC-HP (661.7 mg/g) were about 2.6 and 1.8 times higher than that of PMBC-H2O (369.9 mg/g), respectively, which was much higher than previously reported biochar-based materials. Obviously, KMnO4 pretreatment leaded to a higher enhancement than that of H2O2. The removal mechanism of UVI on PMBC-PP was discussed in-depth. The interaction between UVI species and PMBC-PP was mainly ascribed to the abundant active sites on the surface of PMBC-PP. In a word, conversion of pig manure pre-treated with KMnO4 into biochar not only demonstrates that PMBC-PP has great potential in the treatment of actual uranium-containing wastewater, but also provides a method for the rational utilization of pig manure to reduce the pollution.


Asunto(s)
Estiércol , Uranio , Adsorción , Animales , Carbón Orgánico , Peróxido de Hidrógeno , Porcinos , Aguas Residuales
7.
Chemosphere ; 286(Pt 1): 131626, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34346333

RESUMEN

Extraction uranium from complicated aqueous solutions (seawater and nuclear wastewater) has been promoting the development of multi-functional adsorbents with high adsorption capacities and high selectivity. Here, we proposed a co-immobilization approach to preparing uranium adsorbents. Due to specific recognition and binding between functional groups, bayberry tannin (BT) and hydrous titanium oxide (HTO) were co-immobilized onto nano collagen fibrils (NCFs). The adsorption performances of NCFs-HTO-BT to uranium were systematically investigated in two aqueous systems, including nuclear wastewater and seawater. Results proved that NCFs-HTO-BT possessed the remarkable adsorption capacities and affinities for uranium in wastewater (393.186 mg g-1) and spiked seawater (14.878 mg g-1) with the uranium concentration of 320 mg g-1 and 8 mg g-1, respectively. Based on characteristic analysis of the adsorbent before and after uranium adsorption, the hydroxyl groups of HTO, the adjacent phenolic hydroxyl groups of BT, and nitrogen-containing and oxygen-containing functional groups of NCFs were active sites for uranium adsorption.


Asunto(s)
Myrica , Uranio , Adsorción , Agua de Mar , Taninos , Titanio , Aguas Residuales
8.
Environ Pollut ; 284: 117392, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34030081

RESUMEN

The novel MnxTi1-xOy composite materials with different mole ratios (Mn to Ti = 3:7, 5:5 and 7:3) were prepared to remove uranium species from wastewater. These composite materials were characterized by various techniques, such as thermogravimetric analysis (TG), X-ray diffraction (XRD), Fourier transformed infrared (FT-IR) and scanning electron microscopy (SEM). It was found that the chitosan in MnxTi1-x-Chi were completely removed after calcination at 650 °C and MnxTi1-xOy composites possessed uniform distribution of the porous structure as well as plentiful hydroxyl-containing groups. Moreover, the as-prepared MnxTi1-xOy composite materials were applied to remove uranium from solution to evaluate the adsorption performance. It was found that the Mn0.5Ti0.5Oy possessed relatively excellent uptake performance for uranium comparing with the Mn0.3Ti0.7Oy and Mn0.7Ti0.3Oy and its maximum uptake capacity and efficiency reach 695.2 mg/g and 98.6% (pH = 4, m/V = 0.1 g/L, T = 298 K), respectively, which were much superior than most of reported materials based on titanium oxide or manganese oxide. Besides, the uranium uptake on Mn0.5Ti0.5Oy was independent on ionic strength and it had considerable reusability, which might be the necessary condition for Mn0.5Ti0.5Oy to be applied in uranium uptake from uranium-containing wastewater. As a candidate adsorbent, Mn0.5Ti0.5Oy possessed a high potentiality to remove uranium from wastewater.


Asunto(s)
Uranio , Aguas Residuales , Adsorción , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Titanio
9.
Bioresour Technol ; 298: 122576, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31851897

RESUMEN

Biochar from pyrolysis/gasification is relatively poor in oxygen-containing groups and low in micro/mesoporosity, which constrains its adsorption performance. Here, thermal air treatment (TAT) at a mild condition (300 °C in air) was applied to oxygenate the surfaces of various biochars and modify their pore structures for the promotion of their uranium (U(VI)) adsorptions. Results showed that TAT had a high product yield (>76%), increased the O contents, O/C ratios and O-containing groups in biochars, and substantially developed the micro/mesoporosities of biochars. Batch adsorption results showed that TAT remarkably improved U(VI) adsorption capacities of various biochars. Specifically, the maximum U(VI) adsorption capacities of ash-poor corn cob biochar and ash-rich sewage sludge biochar were increased by 137% to 163 mg/g and 23% to 97 mg/g, respectively. Thus, TAT might be a promising strategy to engineer various biochars for adsorptive applications.


Asunto(s)
Uranio , Adsorción , Carbón Orgánico , Aguas del Alcantarillado
10.
ACS Appl Mater Interfaces ; 11(43): 40898-40908, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31573178

RESUMEN

A novel nanospherical hydrous titanium oxide adsorbent (hydrous titanium oxide-immobilized bovine serum albumin nanospheres, HTO-BSA-NSs) was prepared by immobilizing HTOs with a manipulated molecular mass and number of active sites for uranium on the surface of BSA-NSs. The adsorption performances of HTO-BSA-NSs were investigated in spiked natural seawater with extra 8 ppm uranium. The results demonstrated that HTO-BSA-NSs are capable of uranium capture from a complex aqueous matrix with a low uranium concentration. Meanwhile, the microbial stability of HTO-BSA-NSs in sterilized natural seawater with Marinobacter sp. was investigated and observed through an optical microscope and TEM, revealing that the wrapped HTOs could protect the BSA-NSs from the decomposition of microorganisms, and the structure and functional groups of HTO-BSA-NSs remain stable compared with the BSA-NSs. In addition, the uranium adsorption mechanism of HTO-BSA-NSs is mainly recognized as dehydrated complexation, which was concluded from characterization analysis, adsorption model fitting, and theoretical calculations based on density functional theory. The remarkable uranium adsorption performance and microbial stability of HTO-BSA-NSs indicated that they have the potential to be a low-cost and environmentally friendly adsorbent for uranium extraction from complex environments such as seawater or uranium-containing industrial wastewater.


Asunto(s)
Marinobacter , Nanosferas/química , Agua de Mar/química , Albúmina Sérica Bovina/química , Titanio/química , Uranio/aislamiento & purificación , Animales , Bovinos , Marinobacter/química , Marinobacter/metabolismo , Uranio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA