Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Carbohydr Polym ; 327: 121653, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171675

RESUMEN

Fenugreek (Trigonella foenum-graecum L) galactomannan play an important role in the food and pharmaceutical sectors due to its attractive physicochemical properties. In this study, the changes of structure, properties and biological activity of fenugreek galactomannan (FG) during germination are analyzed by the activity and mechanism of endogenous enzymes (α-D-galactosidase and ß-D-mannanase). The enzymes generally increased during germination and synergistically altered the structure of GM by cutting down the main chains and removing partial side residues. The mannose to galactose ratio (M/G) increased from 1.11 to 1.59, which is accompanied by a drastic decrease in molecular weight from 3.606 × 106 to 0.832 × 106 g/mol, and the drop of viscosity from 0.27 to 0.06 Pa·sn. The degraded macromolecules are attributed to the increase in solubility (from 64.55 % to 88.62 %). In terms of antioxidation and antidiabetic ability, germinated fenugreek galactomannan has the ability to scavenge 67.17 % ABTS free radicals and inhibit 86.89 % α-glucosidase. This galactomannan with low molecular weight and excellent biological activity precisely satisfies the current demands of pharmaceutical reagents and food industry. Seeds germination holds promise as a means of industrial scale production of low molecular weight galactomannans.


Asunto(s)
Trigonella , Trigonella/química , Semillas/química , Mananos/química , Extractos Vegetales/farmacología , Galactosa/análisis
2.
Plant Physiol ; 173(2): 1211-1225, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27932421

RESUMEN

In many higher plants, seed oil accumulation is precisely controlled by intricate multilevel regulatory networks, among which transcriptional regulation mainly influences oil biosynthesis. In Arabidopsis (Arabidopsis thaliana), the master positive transcription factors, WRINKLED1 (WRI1) and LEAFY COTYLEDON1-LIKE (L1L), are important for seed oil accumulation. We found that an R2R3-MYB transcription factor, MYB89, was expressed predominantly in developing seeds during maturation. Oil and major fatty acid biosynthesis in seeds was significantly promoted by myb89-1 mutation and MYB89 knockdown; thus, MYB89 was an important repressor during seed oil accumulation. RNA sequencing revealed remarkable up-regulation of numerous genes involved in seed oil accumulation in myb89 seeds at 12 d after pollination. Posttranslational activation of a MYB89-glucocorticoid receptor fusion protein and chromatin immunoprecipitation assays demonstrated that MYB89 inhibited seed oil accumulation by directly repressing WRI1 and five key genes and by indirectly suppressing L1L and 11 key genes involved in oil biosynthesis during seed maturation. These results help us to understand the novel function of MYB89 and provide new insights into the regulatory network of transcriptional factors controlling seed oil accumulation in Arabidopsis.


Asunto(s)
Arabidopsis/metabolismo , Aceites de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Polinización , Semillas/genética , Factores de Transcripción/genética
3.
Theor Appl Genet ; 124(3): 515-31, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22042481

RESUMEN

Seed oil production in oilseed rape is greatly affected by the temperature during seed maturation. However, the molecular mechanism of the interaction between genotype and temperature in seed maturation remains largely unknown. We developed two near-isogenic lines (NIL-9 and NIL-1), differing mainly at a QTL region influencing oil content on Brassica napus chromosome C2 (qOC.C2.2) under high temperature during seed maturation. The NILs were treated under different temperatures in a growth chamber after flowering. RNA from developing seeds was extracted on the 25th day after flowering (DAF), and transcriptomes were determined by microarray analysis. Statistical analysis indicated that genotype, temperature, and the interaction between genotype and temperature (G × T) all significantly affected the expression of the genes in the 25 DAF seeds, resulting in 4,982, 19,111, and 839 differentially expressed unisequences, respectively. NIL-9 had higher seed oil content than NIL-1 under all of the temperatures in the experiments, especially at high temperatures. A total of 39 genes, among which six are located at qOC.C2.2, were differentially expressed among the NILs regardless of temperature, indicating the core genetic divergence that was unaffected by temperature. Increasing the temperature caused a reduction in seed oil content that was accompanied by the downregulation of a number of genes associated with red light response, photosynthesis, response to gibberellic acid stimulus, and translational elongation, as well as several genes of importance in the lipid metabolism pathway. These results contribute to our knowledge of the molecular nature of QTLs and the interaction between genotype and temperature.


Asunto(s)
Brassica napus/genética , Regulación de la Expresión Génica de las Plantas/genética , Calor , Aceites de Plantas/análisis , Sitios de Carácter Cuantitativo/genética , Semillas/metabolismo , Brassica napus/química , Mapeo Cromosómico , Cartilla de ADN/genética , Ácidos Grasos/análisis , Perfilación de la Expresión Génica , Genotipo , Análisis por Micromatrices , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/genética , Semillas/crecimiento & desarrollo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA