Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nat Med ; 76(1): 220-233, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34751899

RESUMEN

Paclitaxel is widely used in the first-line treatment of ovarian cancer. Nevertheless, the development of acquired resistance to paclitaxel is a major obstacle for the therapy in clinic. Cardamonin is a novel anticancer chalcone which exhibits a wide range of pharmacological activities. However, the effect of cardamonin on paclitaxel-resistant ovarian cancer cells and its underlying molecular mechanisms are unknown. Here, we revealed whether cardamonin had a resensitivity for paclitaxel and furtherly explored the underlying mechanisms on SKOV3-Taxol cells. Our results showed that cardamonin combined with paclitaxel had a synergistic effect of anti-proliferation in SKOV3-Taxol cells, and CI was less than one. Cells apoptosis and G2/M phase arrest were enhanced by cardamonin with paclitaxel in a concentration-dependent way on SKOV3-Taxol cells (P < 0.05). Cardamonin significantly increased drug accumulation in SKOV3-Taxol cells (P < 0.05). Similar to verapamil, cardamonin decreased MDR1 mRNA and P-gp expression (P < 0.05). Cardamonin restrained NF-κB activation in SKOV3-Taxol cells (P < 0.05). Inhibitory effect of P-gp and NF-κB p65 (nuclear protein) expression was enhanced by cardamonin combined with PDTC, a NF-κB inhibitor. Cardamonin significantly inhibited the upregulation of NF-κB p65 (nuclear protein) and P-gp expression induced by TNF-α (P < 0.05). Taken together, cardamonin enhanced the effect of paclitaxel on inhibiting cell proliferation, inducing apoptosis and G2/M phase arrest, and then strengthened the cytotoxic effect of paclitaxel in SKOV3-Taxol cells. The mechanism might be involved in inhibition of P-gp efflux pump, reducing MDR1 mRNA and P-gp expression by cardamonin via suppression of NF-κB activation in SKOV3-Taxol cells.


Asunto(s)
Chalconas , Neoplasias Ováricas , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Apoptosis , Línea Celular Tumoral , Chalconas/farmacología , Humanos , Paclitaxel/farmacología
2.
BMC Complement Altern Med ; 18(1): 317, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514289

RESUMEN

BACKGROUND: Autophagy occurs in cells that undergoing nutrient deprivation. Glycolysis rapidly supplies energy for the proliferation of cancer cells. Cardamonin inhibits proliferation and enhances autophagy by mTORC1 suppression in ovarian cancer cells. Here, we investigate the relationship between cardamonin-triggered autophagy and glycolysis inhibition via mTORC1 suppression. METHODS: Treated with indicated compounds, ATP content and the activity of hexokinase (HK) and lactate dehydrogenase (LDH) were analyzed by the assay kits. Autophagy was detected by monodansylcadaverin (MDC) staining. The relationship between cardamonin-triggered autophagy and glycolysis inhibition via mTORC1 suppression was analyzed by Western blot. RESULTS: We found that cardamonin inhibited the lactate secretion, ATP production, and the activity of HK and LDH. The results demonstrated that cardamonin enhanced autophagy in SKOV3 cells, as indicated by acidic compartments accumulation, microtubule-associated protein 1 Light Chain 3-II (LC3-II) and lysosome associated membrane protein 1 up-regulation. Our results showed that the activation of mTORC1 signaling and the expression HK2 were reduced by cardamonin; whereas the phosphorylation of AMPK (AMP-activated protein kinase) was increased. We also confirmed that the AMPK inhibitor, Compound C, reversed cardamonin-induced upregulation of LC3-II. CONCLUSION: These results suggest that cardamonin-induced autophagy is associated with inhibition on glycolysis by down-regulating the activity of mTORC1 in ovarian cancer cells.


Asunto(s)
Autofagia/efectos de los fármacos , Chalconas/farmacología , Glucólisis/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Humanos
3.
Planta Med ; 84(16): 1183-1190, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29772587

RESUMEN

Cardamonin exhibits a variety of pharmacological activities including anti-inflammatory and antitumor, which are correlated with the inhibition of nuclear factor-kappaB and the mammalian target of rapamycin, respectively. However, whether the anti-inflammatory effects of cardamonin are mediated by the mammalian target of rapamycin remains unknown. In this study, ovarian cancer SKOV3 cells were cultured with lipopolysaccharide to induce inflammation, and the inhibitory effects and underlying molecular mechanisms of cardamonin were investigated using specific inhibitors of the mammalian target of rapamycin and the nuclear factor-kappaB pathway (rapamycin and pyrrolidine dithiocarbamate, respectively). Our results indicated that cardamonin inhibited the viability of normal and lipopolysaccharide-pretreated SKOV3 cells in a concentration-dependent manner. In accordance with rapamycin, the activation of the mammalian target of rapamycin and its downstream target, ribosomal protein S6 kinase 1, was inhibited by cardamonin, while pyrrolidine dithiocarbamate substantially blocked nuclear factor-kappaB activation and mildly inhibited the phosphorylation of the mammalian target of rapamycin and ribosomal protein S6 kinase 1. Pretreated with pyrrolidine dithiocarbamate, the effect of cardamonin on the mammalian target of rapamycin signalling was not affected, but the expression of inflammatory factors was further reduced. In cells pretreated with rapamycin, the inhibitory effects of cardamonin were completely suppressed with regards to the phosphorylation of the mammalian target of rapamycin, ribosomal protein S6 kinase 1, TNF-α, and interleukin-6, and nuclear factor-kappaB p65 protein expression was decreased. In conclusion, our findings indicate that the anti-inflammatory effects of cardamonin are correlated with mammalian target of rapamycin inhibition.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Chalconas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Neoplasias Ováricas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA