Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1258316, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780502

RESUMEN

Panax notoginseng (P. notoginseng) is an invaluable perennial medicinal herb. However, the roots of P. notoginseng are frequently subjected to severe damage caused by root-knot nematode (RKN) infestation. Although we have observed that P. notoginseng possessed adult-plant resistance (APR) against RKN disease, the defense response mechanisms against RKN disease in different age groups of P. notoginseng remain unexplored. We aimed to elucidate the response mechanisms of P. notoginseng at different stages of development to RKN infection by employing transcriptome, metabolome, and histochemistry analyses. Our findings indicated that distinct age groups of P. notoginseng may activate the phenylpropanoid and flavonoid biosynthesis pathways in varying ways, leading to the synthesis of phenolics, flavonoids, lignin, and anthocyanin pigments as both the response and defense mechanism against RKN attacks. Specifically, one-year-old P. notoginseng exhibited resistance to RKN through the upregulation of 5-O-p-coumaroylquinic acid and key genes involved in monolignol biosynthesis, such as PAL, CCR, CYP73A, CYP98A, POD, and CAD. Moreover, two-year-old P. notoginseng enhanced the resistance by depleting chlorogenic acid and downregulating most genes associated with monolignol biosynthesis, while concurrently increasing cyanidin and ANR in flavonoid biosynthesis. Three-year-old P. notoginseng reinforced its resistance by significantly increasing five phenolic acids related to monolignol biosynthesis, namely p-coumaric acid, chlorogenic acid, 1-O-sinapoyl-D-glucose, coniferyl alcohol, and ferulic acid. Notably, P. notoginseng can establish a lignin barrier that restricted RKN to the infection site. In summary, P. notoginseng exhibited a potential ability to impede the further propagation of RKN through the accumulation or depletion of the compounds relevant to resistance within the phenylpropanoid and flavonoid pathways, as well as the induction of lignification in tissue cells.

2.
Plant Divers ; 45(1): 104-116, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36876306

RESUMEN

Compared with the use of monocultures in the field, cultivation of medicinal herbs in forests is an effective strategy to alleviate disease. Chemical interactions between herbs and trees play an important role in disease suppression in forests. We evaluated the ability of leachates from needles of Pinus armandii to induce resistance in Panax notoginseng leaves, identified the components via gas chromatography-mass spectrometry (GC-MS), and then deciphered the mechanism of 2,3-Butanediol as the main component in the leachates responsible for resistance induction via RNA sequencing (RNA-seq). Prespraying leachates and 2,3-Butanediol onto leaves could induce the resistance of P. notoginseng to Alternaria panax. The RNA-seq results showed that prespraying 2,3-Butanediol onto leaves with or without A. panax infection upregulated the expression of large number of genes, many of which are involved in transcription factor activity and the mitogen-activated protein kinase (MAPK) signaling pathway. Specifically, 2,3-Butanediol spraying resulted in jasmonic acid (JA) -mediated induced systemic resistance (ISR) by activating MYC2 and ERF1. Moreover, 2,3-Butanediol induced systemic acquired resistance (SAR) by upregulating pattern-triggered immunity (PTI)- and effector-triggered immunity (ETI)-related genes and activated camalexin biosynthesis through activation of WRKY33. Overall, 2,3-Butanediol from the leachates of pine needles could activate the resistance of P. notoginseng to leaf disease infection through ISR, SAR and camalexin biosynthesis. Thus, 2,3-Butanediol is worth developing as a chemical inducer for agricultural production.

3.
Plant Dis ; 107(2): 272-275, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35852901

RESUMEN

Growth of the Chinese herbal medicine industry has resulted in several new pests and diseases. China is one of the world largest producers of monkshood (Aconitum carmichaelii Debx.), but an unidentified root-knot nematode has become a significant pest in the southwestern provinces of Yunnan and Sichuan. Morphological characteristics and the ribosomal DNA-internal transcribed spacer and D2-D3 region of the 28S ribosomal RNA gene sequences were used to identify the nematode as Meloidogyne hapla. Through investigation, this is the first report of M. hapla infecting monkshood in Yunnan and Sichuan Provinces.


Asunto(s)
Aconitum , Tylenchoidea , Animales , Aconitum/genética , China , Tylenchoidea/genética , ADN Ribosómico
4.
Plant Divers ; 42(2): 102-110, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32373768

RESUMEN

Long-term moderately high or low temperatures can damage economically important plants. In the present study, we treated Panax notoginseng, an important traditional Chinese medicine, with temperatures of 10, 20, and 30 °C for 30 days. We then investigated P. notoginseng glycerolipidome responses to these moderate temperature stresses using an ESI/MS-MS-based lipidomic approach. Both long-term chilling (LTC, 10 °C) and long-term heat (LTH, 30 °C) decreased photo pigment levels and photosynthetic rate. LTH-induced degradation of photo pigments and glycerolipids may further cause the decline of photosynthesis and thereafter the senescence of leaves. LTC-induced photosynthesis decline is attributed to the degradation of photosynthetic pigments rather than the degradation of chloroplastidic lipids. P. notoginseng has an especially high level of lysophosphatidylglycerol, which may indicate that either P. notoginseng phospholipase A acts in a special manner on phosphatidylglycerol (PG), or that phospholipase B acts. The ratio of sulfoquinovosyldiacylglycerol (SQDG) to PG increased significantly after LTC treatment, which may indicate that SQDG partially substitutes for PG. After LTC treatment, the increase in the degree of unsaturation of plastidic lipids was less than that of extraplastidic lipids, and the increase in the unsaturation of PG was the largest among the ten lipid classes tested. These results indicate that increasing the level of unsaturated PG may play a special role in maintaining the function and stability of P. notoginseng photosystems after LTC treatment.

5.
PLoS One ; 9(12): e115052, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25551554

RESUMEN

BACKGROUND: Intercropping systems could increase crop diversity and avoid vulnerability to biotic stresses. Most studies have shown that intercropping can provide relief to crops against wind-dispersed pathogens. However, there was limited data on how the practice of intercropping help crops against soil-borne Phytophthora disease. PRINCIPAL FINDINGS: Compared to pepper monoculture, a large scale intercropping study of maize grown between pepper rows reduced disease levels of the soil-borne pepper Phytophthora blight. These reduced disease levels of Phytophthora in the intercropping system were correlated with the ability of maize plants to form a "root wall" that restricted the movement of Phytophthora capsici across rows. Experimentally, it was found that maize roots attracted the zoospores of P. capsici and then inhibited their growth. When maize plants were grown in close proximity to each other, the roots produced and secreted larger quantities of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and 6-methoxy-2-benzoxazolinone (MBOA). Furthermore, MBOA, benzothiazole (BZO), and 2-(methylthio)-benzothiazole (MBZO) were identified in root exudates of maize and showed antimicrobial activity against P. capsici. CONCLUSIONS: Maize could form a "root wall" to restrict the spread of P. capsici across rows in maize and pepper intercropping systems. Antimicrobe compounds secreted by maize root were one of the factors that resulted in the inhibition of P. capsici. These results provide new insights into plant-plant-microbe mechanisms involved in intercropping systems.


Asunto(s)
Agricultura/métodos , Interacciones Huésped-Parásitos , Piper/crecimiento & desarrollo , Piper/parasitología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/parasitología , Suelo/parasitología , Zea mays/crecimiento & desarrollo , Ambiente Controlado , Phytophthora/efectos de los fármacos , Phytophthora/fisiología , Piper/microbiología , Enfermedades de las Plantas/microbiología , Extractos Vegetales/farmacología , Raíces de Plantas/química , Raíces de Plantas/microbiología , Raíces de Plantas/parasitología , Rizosfera , Microbiología del Suelo , Zea mays/química
6.
PLoS One ; 4(11): e8049, 2009 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-19956624

RESUMEN

Traditional farming practices suggest that cultivation of a mixture of crop species in the same field through temporal and spatial management may be advantageous in boosting yields and preventing disease, but evidence from large-scale field testing is limited. Increasing crop diversity through intercropping addresses the problem of increasing land utilization and crop productivity. In collaboration with farmers and extension personnel, we tested intercropping of tobacco, maize, sugarcane, potato, wheat and broad bean--either by relay cropping or by mixing crop species based on differences in their heights, and practiced these patterns on 15,302 hectares in ten counties in Yunnan Province, China. The results of observation plots within these areas showed that some combinations increased crop yields for the same season between 33.2 and 84.7% and reached a land equivalent ratio (LER) of between 1.31 and 1.84. This approach can be easily applied in developing countries, which is crucial in face of dwindling arable land and increasing food demand.


Asunto(s)
Biodiversidad , Productos Agrícolas , Agricultura/métodos , China , Países en Desarrollo , Ecosistema , Fabaceae , Enfermedades de las Plantas , Saccharum , Estaciones del Año , Solanum tuberosum , Nicotiana , Triticum , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA