Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 120: 155077, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716032

RESUMEN

BACKGROUND: Autoimmune hepatitis (AIH) poses an important public health concern worldwide, with few therapeutic options available. Cornuside, a primary cornel iridoid glycoside present in Cornus officinalis Sieb. et Zucc., is a well-known traditional Chinese medicine that possesses anti-inflammatory, antioxidant and anti-apoptotic properties. However, the effects of cornuside on autoimmune diseases including AIH is still not defined, neither is clear on the mechanisms of cornuside in the suppression of inflammatory responses. PURPOSE: The study was aimed to investigate the therapeutic effects of cornuside on AIH using murine models. STUDY DESIGN: A murine model of AIH induced by concanavalin A (Con A) was used to examine the pharmacological activity of cornuside in suppressing the inflammatory responses in vivo. METHODS: C57BL/6J mice were intravenously with different doses of cornuside and challenged with 18 mg/kg Con A 3 h later. Network pharmacological analysis was performed to identify the potential target genes and signaling pathways by cornuside in AIH. Next serum and liver tissues were collected 12 h after Con A injection to analyze the levels of markers for hepatic injury, apoptosis, oxidative stress, immune responses, and inflammation. RESULTS: Network pharmacological analysis revealed that cornuside may modulate oxidative stress and apoptosis in AIH. Compared with the Con A group, cornuside pretreatment significantly reduced the serum levels of alanine aminotransferase and aspartate aminotransferase, improving histopathological damage and apoptosis in the livers. In addition, cornuside decreased the levels of malondialdehyde, myeloperoxidase, but increased superoxide dismutase levels, suggesting the relieving of oxidative stress. Furthermore, cornuside suppressed the activation of T and natural killer T cells, whereas the proportion of myeloid-derived suppressor cells was significantly increased. The production of proinflammatory cytokines, including interleukin (IL)-6, IL-12, IL-1ß, and tumor necrosis factor-alpha (TNF-α), was also clearly decreased. Finally, western blot analysis displayed that cornuside inhibited the phosphorylation of extracellular receptor kinase (ERK) and c-Jun N-terminal kinase (JNK). CONCLUSIONS: We demonstrated that cornuside has protective effects for Con A-induced immune-mediated hepatitis by suppressing the oxidative stress, apoptosis, and the inflammatory responses through the ERK and JNK signaling pathways, as well as by modulating the activation and recruitment of immune cells.


Asunto(s)
Hepatitis Autoinmune , Animales , Ratones , Ratones Endogámicos C57BL , Hepatitis Autoinmune/tratamiento farmacológico , Glucósidos , Iridoides/farmacología
2.
Theranostics ; 9(5): 1453-1473, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30867843

RESUMEN

Glioblastoma multiforme (GBM) has been considered the most aggressive glioma type. Temozolomide (TMZ) is the main first-line chemotherapeutic agent for GBM. Decreased mutS homolog 6 (MSH6) expression is clinically recognized as one of the principal reasons for GBM resistance to TMZ. However, the specific functions of MSH6 in GBM, in addition to its role in mismatch repair, remain unknown. Methods: Bioinformatics were employed to analyze MSH6 mRNA and protein levels in GBM clinical samples and to predict the potential cancer-promoting functions and mechanisms of MSH6. MSH6 levels were silenced or overexpressed in GBM cells to assess its functional effects in vitro and in vivo. Western blot, qRT-PCR, and immunofluorescence assays were used to explore the relevant molecular mechanisms. Cu2(OH)PO4@PAA nanoparticles were fabricated through a hydrothermal method. Their MRI and photothermal effects as well as their effect on restraining the MSH6-CXCR4-TGFB1 feedback loop were investigated in vitro and in vivo. Results: We demonstrated that MSH6 is an overexpressed oncogene in human GBM tissues. MSH6, CXCR4 and TGFB1 formed a triangular MSH6-CXCR4-TGFB1 feedback loop that accelerated gliomagenesis, proliferation (G1 phase), migration and invasion (epithelial-to-mesenchymal transition; EMT), stemness, angiogenesis and antiapoptotic effects by regulating the p-STAT3/Slug and p-Smad2/3/ZEB2 signaling pathways in GBM. In addition, the MSH6-CXCR4-TGFB1 feedback loop was a vital marker of GBM, making it a promising therapeutic target. Notably, photothermal therapy (PTT) mediated by Cu2(OH)PO4@PAA + near infrared (NIR) irradiation showed outstanding therapeutic effects, which might be associated with a repressed MSH6-CXCR4-TGFB1 feedback loop and its downstream factors in GBM. Simultaneously, the prominent MR imaging (T1WI) ability of Cu2(OH)PO4@PAA could provide visual guidance for PTT. Conclusions: Our findings indicate that the oncogenic MSH6-CXCR4-TGFB1 feedback loop is a novel therapeutic target for GBM and that PTT is associated with the inhibition of the MSH6-CXCR4-TGFB1 loop.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Glioblastoma/fisiopatología , Glioblastoma/terapia , Hipertermia Inducida/métodos , Fototerapia/métodos , Receptores CXCR4/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Biología Computacional , Modelos Animales de Enfermedad , Retroalimentación Fisiológica , Perfilación de la Expresión Génica , Humanos , Ratones Endogámicos BALB C , Modelos Teóricos , Nanoestructuras/administración & dosificación , Resultado del Tratamiento , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Int J Biol Macromol ; 106: 1279-1287, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28855131

RESUMEN

In the present study, corn bran arabinoxylan (CAX) were modified with sinapic acid (SA) by esterification to generate sinapic acid corn bran arabinoxylan esters (SA-CAX) with various substituted degrees. The structure of SA-CAX was characterized by FT-IR, NMR and UV spectroscopy. And the antioxidant activities of SA-CAX were evaluated by scavenging the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical, emulsion lipid oxidation test and the lipid peroxidant level test. Compared with CAX, SA-CAX exhibited superior antioxidant activities in vitro, which indicated that the attachment of SA to CAX could enhance antioxidant activities of CAX. Moreover, the aqueous solution behavior of CAX and SA-CAX was investigated by light scattering, scanning electron microscopy and rheological measurement. The SA-CAX could form the aggregates even at diluted solutions. The hydrophobic association led to a higher viscosity and stronger gel behavior of the SA-CAX aqueous solution than that of CAX aqueous solution.


Asunto(s)
Antioxidantes/síntesis química , Ácidos Cumáricos/química , Fibras de la Dieta , Xilanos/síntesis química , Antioxidantes/química , Compuestos de Bifenilo/química , Aceite de Maíz/química , Ácidos Cumáricos/síntesis química , Esterificación , Ésteres/química , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/química , Espectroscopía Infrarroja por Transformada de Fourier , Viscosidad , Xilanos/química , Zea mays/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA