Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur J Pharmacol ; 940: 175480, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36566008

RESUMEN

Intestinal intraepithelial lymphocytes (IELs) play a sentinel role in the mucosal immune system because of their unique anatomical location in the epithelial layer. The disruption of IEL homeostasis is implicated in driving the intestinal injury of many typical inflammatory disorders, such as inflammatory bowel disease (IBD) and sepsis. Therefore, it is meaningful to alleviate intestinal injury by restoring IEL homeostasis in disease conditions. This study explores the effects of glutamine on intestinal IEL homeostasis in a murine model of burn sepsis. We report that glutamine inhibits inflammatory response and reduces injury in the small intestine of burn septic mice. This effect is attributed to the maintaining of IEL homeostasis by suppressing apoptosis and restoring the disrupted subpopulation balance induced by burn sepsis. Mechanistically, we show that glutamine does not affect the IL-15 dependent mechanisms that drive the maintenance and differentiation of IELs. Instead, glutamine sustains IEL homeostasis by upregulate aryl hydrocarbon receptor (AHR) and interleukin (IL)-22 transcription and expression. Consistently, the protective roles of glutamine in burn septic mice were repressed by further supplement with an AHR antagonist CH-223191. Collectively, our study reveals a new role of glutamine to maintain IEL homeostasis by activating the AHR signaling pathway, which in turn ameliorates intestinal injury in burn sepsis.


Asunto(s)
Quemaduras , Linfocitos Intraepiteliales , Sepsis , Ratones , Animales , Glutamina/farmacología , Glutamina/metabolismo , Mucosa Intestinal , Homeostasis , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Quemaduras/complicaciones , Quemaduras/tratamiento farmacológico , Quemaduras/metabolismo , Ratones Endogámicos C57BL
2.
J Ethnopharmacol ; 293: 115317, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35469829

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: As a folk medicine, Aconitum sinomontanum Nakai (Ranunculaceae) a perennial herbaceous flowering plant, is a widely used traditional Chinese medicine. Its rhizomes and roots are known as 'Gaowutou' in China, and it has been traditionally used for the treatment of rheumatoid arthritis, painful swelling of joints, bruises and injuries and has been known to grow well in regions of high altitude such as Gansu, Tibet etc. THE AIM OF THE REVIEW: This systematic review the comprehensive knowledge of the A. sinomontanum, including its traditional processing and uses, chemical constituents, pharmacological activities, toxicity assessment, pharmacokinetics and metabolism, and its use in clinical settings to emphasize the benefits of this species. We also discuss expectations for prospective research and implementation of this herb. This work lays a solid foundation for further development of A. sinomontanum. MATERIALS AND METHOD: Information on the studies of A. sinomontanum was collected from scientific journals, books, and reports via library and electronic data search (PubMed, Elsevier, Scopus, Google Scholar, Springer, Science Direct, Wiley, ACS, EMBASE, Web of Science and CNKI). Meanwhile, it was also obtained from published works of material medica, folk records, ethnopharmacological literatures, Ph.D. and Masters dissertation. RESULTS: As a member of the Ranunculaceae family, A. sinomontanum possesses its up-and-coming biological characteristics. It is widely reported for treating rheumatoid arthritis, painful swelling of joints, bruises and injuries. Currently, over 71 phytochemical ingredients have been obtained and identified from different parts of A. sinomontanum. Among them, alkaloids, flavonoids, steroids, glycosides are the major bioactive constituents. Activities such as antinociceptive, anti-inflammatory, antitumor, antiarrhythmic, local anesthetic, antipyretic, antimicrobial, insecticidal and others have been corroborated in vivo and in vitro. These properties are attributed to different alkaloids. In addition, many of the active ingredients, such as lappaconitine, ranaconitine and total alkaloids have been used as quality markers. CONCLUSION: This work contributes to update the ethnopharmacological uses, chemical constituents, pharmacological activities, toxicity assessment, pharmacokinetics and metabolism, and clinical settings information for A. sinomontanum, which provide basic information to help better understand the pharmacological and toxicological activities of A. sinomontanum in human. However, further in-depth studies are needed to determine the medical uses of this herb and its chemical constituents, pharmacological activities, clinical applications and toxicology.


Asunto(s)
Aconitum , Alcaloides , Artritis Reumatoide , Contusiones , Ranunculaceae , Aconitum/química , Artritis Reumatoide/tratamiento farmacológico , Contusiones/tratamiento farmacológico , Etnofarmacología , Humanos , Medicina Tradicional China , Fitoquímicos/uso terapéutico , Fitoquímicos/toxicidad , Extractos Vegetales/uso terapéutico , Extractos Vegetales/toxicidad , Estudios Prospectivos
3.
J Exp Clin Cancer Res ; 38(1): 242, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31174565

RESUMEN

BACKGROUND: Lung cancer remains the most common cause of cancer-related deaths, with a high incidence and mortality in both sexes worldwide. Chemoprevention has been the most effective strategy for lung cancer prevention. Thus, exploring novel and effective candidate agents with low toxicity for chemoprevention is essential and urgent. Houttuynia cordata Thunb. (Saururaceae) (H. cordata), which is a widely used herbal medicine and is also popularly consumed as a healthy vegetable, exhibits anti-inflammatory, antioxidant and antitumor activity. However, the chemopreventive effect of H. cordata against benzo(a)pyrene (B[a]P)-initiated lung tumorigenesis and the underlying mechanism remain unclear. METHODS: A B[a]P-stimulated lung adenocarcinoma animal model in A/J mice in vivo and a normal lung cell model (BEAS.2B) in vitro were established to investigate the chemopreventive effects of H. cordata and its bioactive compound 2-undecanone against lung tumorigenesis and to clarify the underlying mechanisms. RESULTS: H. cordata and 2-undecanone significantly suppressed B[a]P-induced lung tumorigenesis without causing obvious systemic toxicity in mice in vivo. Moreover, H. cordata and 2-undecanone effectively decreased B[a]P-induced intracellular reactive oxygen species (ROS) overproduction and further notably protected BEAS.2B cells from B[a]P-induced DNA damage and inflammation by significantly inhibiting phosphorylated H2A.X overexpression and interleukin-1ß secretion. In addition, H. cordata and 2-undecanone markedly activated the Nrf2 pathway to induce the expression of the antioxidative enzymes heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO-1). Nrf2 silencing by transfection with Nrf2 siRNA markedly decreased the expression of HO-1 and NQO-1 to diminish the reductions in B[a]P-induced ROS overproduction, DNA damage and inflammation mediated by H. cordata and 2-undecanone. CONCLUSIONS: H. cordata and 2-undecanone could effectively activate the Nrf2-HO-1/NQO-1 signaling pathway to counteract intracellular ROS generation, thereby attenuating DNA damage and inflammation induced by B[a]P stimulation and playing a role in the chemoprevention of B[a]P-induced lung tumorigenesis. These findings provide new insight into the pharmacological action of H. cordata and indicate that H. cordata is a novel candidate agent for the chemoprevention of lung cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Houttuynia/química , Cetonas/farmacología , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Hemo-Oxigenasa 1/metabolismo , Humanos , Espacio Intracelular/metabolismo , Cetonas/química , Masculino , Ratones , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo
4.
Anal Chim Acta ; 1066: 49-57, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31027534

RESUMEN

A mechanochemical magnetic solid phase extraction (MCMSPE) method was developed for a one-pot extraction and enrichment of organochlorine pesticides in tea leaves to demonstrate the advantage of using magnetic nanoparticles in the sample preparation process. The enriched analytes were subsequently detected by ultra-high performance liquid chromatography and gas chromatography mass spectrometry. The presence of magnetic metal-organic-framework (MMOF) (Fe3O4@MIL-100 (Fe)) nanoparticles help to rupture the cell walls in solid plant samples more thoroughly, and at the same time, act as a selective sorbent for the enrichment of target analytes. Compared to traditional methods, this approach significantly shortens the sample processing time from tens of minutes to tens of seconds. The parameters of the procedure were systematically studied and optimized to achieve good limits of detection (0.62-3.92 ng g-1, LOD S/N = 3), significantly improved recoveries (81.46-113.59%), and good reproducibility (RSD 2.63-9.87%, n = 5). The results indicated that this method can be applied for high throughput determination of organochlorine pesticides in tea leaves, and can be used for other dried plant samples.


Asunto(s)
Hidrocarburos Clorados/análisis , Nanopartículas de Magnetita/química , Hojas de la Planta/química , Extracción en Fase Sólida , Té/química , Fenómenos Mecánicos , Estructuras Metalorgánicas/química , Tamaño de la Partícula , Plaguicidas/análisis , Propiedades de Superficie
5.
J Ethnopharmacol ; 228: 82-91, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30243825

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Astragali radix (Huang Qi, HQ), a well-known Chinese herbal medicine, is widely coadministered with many other drugs for treating diseases. The potential herb-drug interactions (HDIs) possibly occur during the combination therapy. P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are the crucial targets that mediate the production of HDIs. We previously observed that HQ and its three main bioactive compounds, including Astragaloside IV (AS-IV), calycosin (CS) and formononetin (FMNT), could significantly induce the expression of P-gp and BCRP in HepG2 cells in vitro. However, their modulations on the function of P-gp and BCRP remain unknown; their impact on these two proteins expression in vivo is not clear; the exact regulatory mechanism has also not yet been explored. AIM OF THE STUDY: This study aimed to investigate the impact of HQ, AS-IV, CS and FMNT on P-gp and BCRP in vivo, and the exact regulatory mechanism involved. The effects of HQ and these compounds on the function of P-gp and BCRP were also studied. MATERIALS AND METHODS: Wild-type C57BL/6 mice and nuclear factor E2-related factor-2 knockout (Nrf2-/-) C57BL/6 mice were orally treated with HQ, AS-IV, CS or FMNT. The protein levels of P-gp and BCRP in the liver of mice were measured by using Western blot and immunohistochemistry. The mRNA levels were measured by using real-time PCR. The activation of the drugs on the antioxidant response element (ARE)-luciferin activity was studied by using reporter assay in a stably transfected HepG2-C8 cells. The efflux activity of P-gp and BCRP in HepG2 cells were tested by using flow cytometer with typical probes. RESULTS: HQ, AS-IV, CS and FMNT significantly upregulated the P-gp and BCRP expression in the liver of wild-type mice. The induction was significantly reversed in the Nrf2-/- mice. HQ and these compounds significantly increased the Nrf2 expression in wild-type mice. HQ and these compounds also markedly enhanced the ARE-luciferin activity and promoted the nuclear translocation of Nrf2 in cells. Besides, HQ and these compounds significantly enhanced the efflux activity of P-gp and BCRP, and increased the intracellular ATP levels. CONCLUSIONS: Our results proved that HQ and its main bioactive compounds could induce the P-gp and BCRP expression through the activation of the Nrf2-mediated signaling pathway. HQ and these compounds also significantly enhanced the efflux activity of P-gp and BCRP, and the increased intracellular ATP levels were likely involved in the increased P-gp and BCRP function. These results suggested that potentially HDIs likely occurred when HQ was used concomitantly with other drugs that are substrates of P-gp and BCRP.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Medicamentos Herbarios Chinos/farmacología , Isoflavonas/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Saponinas/farmacología , Triterpenos/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Adenosina Trifosfato/metabolismo , Animales , Astragalus propinquus , Neoplasias de la Mama/metabolismo , Células Hep G2 , Interacciones de Hierba-Droga , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética
6.
Phytomedicine ; 44: 187-203, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29526584

RESUMEN

BACKGROUND: Fuzi, which is the processed lateral roots of Aconitum carmichaeli Debx. (Ranunculaceae), is a traditional herbal medicine that is well known for its excellent pharmacological effects and acute toxicity. Aconitum alkaloids are responsible for its pharmacological activity and toxicity. Although a large number of studies on Fuzi have been reported, no comprehensive review on its pharmacokinetics has yet been published. PURPOSE: This paper seeks to present a comprehensive review regarding the phytochemistry, pharmacokinetic features and toxicity of Fuzi. The regulation of drug-metabolizing enzymes (DMEs) and efflux transporters (ETs) by Fuzi is also concluded. Additionally, the use of Fuzi as a personalized medicine based on the bioavailability barrier (BB), which mainly comprises DMEs and ETs, is discussed. METHODS: All available information on Fuzi was collected by searching for key words in PubMed, ScienceDirect, CNKI, Google Scholar, Baidu Scholar, and Web of Science. RESULTS: Aconitum alkaloids, which mainly include diester-diterpene alkaloids (DDAs), monoester-diterpene alkaloids (MDAs) and unesterified-diterpene alkaloids (UDAs), could be detected after Fuzi ingestion in vivo. The Aconitum alkaloids are rapidly absorbed in the intestine and extensively distributed in the body. DMEs, especially CYP3A4/5, are responsible for various types of metabolic reactions of the Aconitum alkaloids. ETs, including P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP), are involved in the efflux of the DDAs and MDAs. The kidney is the most important organ involved in the excretion of the Aconitum alkaloids. DDAs are the main toxic compounds present in Fuzi, and their acute toxicity is mainly due to their effects on the voltage-dependent sodium channels. Furthermore, Fuzi can substantially regulate DMEs and ETs. CONCLUSIONS: The toxicity of DDAs is acute. However, further investigations are necessary to determine the exact toxicological mechanisms. The significant impact of Fuzi on DMEs and ETs suggests that the co-administration of Fuzi with drugs that are substrates of DMEs and/or ETs may cause herb-drug interactions (HDIs). The BB network controlled exposure to the Aconitum alkaloids in vivo. Polymorphisms of DMEs and ETs in different individuals contribute to the differences in the efficacy and toxicity of Fuzi ingestion. In the future, the use of Fuzi as personalized medicine based on the BB network is necessary and practical to achieve ideal therapeutic efficacy with minimal toxicity.


Asunto(s)
Diterpenos/química , Diterpenos/farmacocinética , Aconitum/química , Alcaloides/química , Alcaloides/farmacocinética , Alcaloides/farmacología , Animales , Disponibilidad Biológica , Cromatografía Líquida de Alta Presión , Diterpenos/toxicidad , Medicamentos Herbarios Chinos , Interacciones de Hierba-Droga , Humanos , Inactivación Metabólica/efectos de los fármacos , Fitoterapia/métodos , Extractos Vegetales/química , Medicina de Precisión , Distribución Tisular
7.
J Ethnopharmacol ; 220: 44-56, 2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-29258855

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Camptosorus sibiricus Rupr (CSR) is a widely used herbal medicine with antivasculitis, antitrauma, and antitumor effects. However, the effect of CSR aqueous extract on B[a]P-initiated tumorigenesis and the underlying mechanism remain unclear. Moreover, the compounds in CSR aqueous extract need to be identified and structurally characterized. AIM OF THE STUDY: We aim to investigate the chemopreventive effect of CSR and the underlying molecular mechanism. MATERIALS AND METHODS: A B[a]P-stimulated normal cell model (BEAS.2B) and lung adenocarcinoma animal model were established on A/J mice. In B[a]P-treated BEAS.2B cells, the protective effects of CSR aqueous extract on B[a]P-induced DNA damage and ROS production were evaluated through flow cytometry, Western blot, real-time quantitative PCR, single-cell gel electrophoresis, and immunofluorescence. Moreover, a model of B[a]P-initiated lung adenocarcinoma was established on A/J mice to determine the chemopreventive effect of CSR in vivo. The underlying mechanism was analyzed via immunohistochemistry and microscopy. Furthermore, the new compounds in CSR aqueous extract were isolated and structurally characterized using IR, HR-ESI-MS, and 1D and 2D NMR spectroscopy. RESULTS: CSR effectively suppressed ROS production by re-activating Nrf2-mediated reductases HO-1 and NQO-1. Simultaneously, CSR attenuated the DNA damage of BEAS.2B cells in the presence of B[a]P. Moreover, CSR at 1.5 and 3 g/kg significantly suppressed tumorigenesis with tumor inhibition ratios of 36.65% and 65.80%, respectively. The tumor volume, tumor size, and multiplicity of B[a]P-induced lung adenocarcinoma were effectively decreased by CSR in vivo. After extracting and identifying the compounds in CSR aqueous extract, three new triterpene saponins were isolated and characterized structurally. CONCLUSIONS: CSR aqueous extract prevents lung tumorigenesis by exerting dual effects against ROS and DNA damage, suggesting that CSR is a novel and effective agent for B[a]P-induced carcinogenesis. Moreover, by isolating and structurally characterizing three new triterpene saponins, our study further standardized the quality of CSR aqueous extract, which could widen CSR clinical applications.


Asunto(s)
Adenocarcinoma/prevención & control , Anticarcinógenos/farmacología , Helechos/química , Neoplasias Pulmonares/prevención & control , Extractos Vegetales/farmacología , Adenocarcinoma del Pulmón , Animales , Anticarcinógenos/aislamiento & purificación , Benzo(a)pireno/toxicidad , Western Blotting , Daño del ADN/efectos de los fármacos , Citometría de Flujo , Humanos , Ratones , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo , Saponinas/aislamiento & purificación , Triterpenos/química , Triterpenos/aislamiento & purificación
8.
Phytomedicine ; 44: 87-97, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29277460

RESUMEN

BACKGROUND: Aconitum alkaloids from Aconitum species are often used to treat arthritis and rheumatic diseases but have the drawback of high toxicity. Identifying their pharmacokinetic behaviour is important for the safe clinical application of Aconitum species. Efflux transporters (ETs), including P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP), have important functions in regulating the pharmacokinetic behaviours of drugs and in herb-herb or herb-drug interactions (HDIs). The Aconitum alkaloids regulate P-gp expression and function, but their effects on MRP2 and BCRP expression remain unknown. PURPOSE: To determine the effects of three Aconitum alkaloids, aconitine (AC), benzoylaconine (BAC), and aconine, on MRP2 and BCRP. METHODS: The levels of the protein and mRNA expression of MRP2 and BCRP in vivo and in vitro were measured via Western blotting and real-time PCR, respectively. Fluorescence signals of MRP2 and BCRP were detected via confocal fluorescence microscopy. A reporter assay using HepG2-C8 cells, which were generated by transfecting plasmids containing the antioxidant response element (ARE)-luciferin gene into HepG2 cells, was used to examine the ARE-luciferin activity. The transport activities of MRP2 and BCRP were tested via flow cytometry using substrate probes. RESULTS: The Aconitum alkaloids significantly up-regulated MRP2 and BCRP expression, accompanied by a marked increase in nuclear factor E2-related factor-2 (Nrf2) expression in the jejunum, ileum, and colon of FVB mice, in the order AC < BAC < aconine. In the in vitro model, the Aconitum alkaloids increased MRP2 and BCRP expression in Caco-2 and LS174T cells, in the order AC < BAC < aconine. Additionally, these alkaloids promoted the translocation of Nrf2 from the cytoplasm to the nucleus and significantly increased ARE-luciferin activity in HepG2-C8 cells. Luteolin, a potent inhibitor of Nrf2, markedly prevented MRP2 and BCRP expression from being induced by the three Aconitum alkaloids. The efflux activity of MRP2 was also significantly increased in cells receiving the same treatment. CONCLUSIONS: The tested Aconitum alkaloids significantly increased the expression of MRP2 and BCRP by activating the Nrf2-mediated signalling pathway and enhanced the efflux activity of MRP2. The potential for herb-herb interactions or HDIs exists when Aconitum species are co-administered with substrate drugs that are transported via MRP2 and BCRP. Therefore, the Aconitum alkaloids may be used as quality indicators for the herbs of Aconitum species.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Aconitum/química , Alcaloides/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Aconitina/análogos & derivados , Aconitina/farmacología , Alcaloides/efectos adversos , Animales , Elementos de Respuesta Antioxidante/efectos de los fármacos , Células CACO-2 , Células Hep G2 , Humanos , Masculino , Ratones Endogámicos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas de Neoplasias/genética , Transducción de Señal/efectos de los fármacos
9.
J Ethnopharmacol ; 193: 1-11, 2016 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-27422165

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Spica prunellae (SP) is a well-known traditional Chinese medicinal herb with properties of antihypertensive, antihyperglycemic, antiviral, anti-inflammatory, and antitumor activities. This herb is also popularly consumed as a food additive in some drinks or other food forms for treating pyreticosis. Rosmarinic acid (RA) is the marker compound from SP, which possesses anti-oxidative and anti-inflammatory functions. AIM OF THE STUDY: This study aims to investigate the regulatory effect of the water extract of SP (WESP) and RA on efflux transports (ETs), including P-glycoprotein (p-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) in HepG2 cell line. Results would provide beneficial information for the proper application of SP in clinics. MATERIALS AND METHODS: HepG2 cells were treated with different doses of the tested drugs for 24 or 96h. MTT assay was used to examine cell viability. The protein and mRNA levels of the ETs were measured by using Western blot and real-time PCR, respectively. Reporter assay was used to study the antioxidant response element (ARE)-luciferin activity by using HepG2-C8 cells, which were generated by transfecting plasmid containing ARE-luciferin gene into HepG2 cells. The transport activities of ETs were tested by using substrate probes. RESULTS: WESP significantly (p<0.05) increased the expression of ETs in a dose-dependent manner. The increase caused by WESP was stronger than RA alone. Both WESP and RA promoted the translocation of nuclear factor E2-related factor-2 (Nrf2) from cytoplasm to the nucleus as well as significantly (p<0.05) enhanced the ARE-luciferin activity. WESP and RA also enhanced the efflux activity of P-gp and MRP2, accompanied by marked increase (p<0.05) in the intracellular ATP levels. CONCLUSIONS: WESP could significantly induce the expression of ETs through the activation of Nrf2-mediated signaling pathway in HepG2 cells. RA could be one of the active compounds responsible for the induction. WESP and RA also enhanced the efflux activity of P-gp and MRP2, and the increased intracellular ATP levels were likely involved in this induction. Results of this study provide a better understanding of the regulation of SP on ETs and the underlying molecular mechanism. Results indicated that potential drug-drug interactions may exist when SP is co-administered with other substrate drugs that are transported via the ETs, especially P-gp and MRP2, thereby providing beneficial information for appropriate use of SP for clinical therapy.


Asunto(s)
Biomarcadores/metabolismo , Cinamatos/metabolismo , Depsidos/metabolismo , Medicamentos Herbarios Chinos , Proteínas de Transporte de Membrana/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Células Hep G2 , Humanos , Transporte de Proteínas , Ácido Rosmarínico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA