Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 17(13): 12160-12175, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37200053

RESUMEN

Phototherapy is an effective strategy to control Candida albicans (C. albicans) infection without raising the concern of drug resistance. Despite its effectiveness, a higher dose of phototherapeutic power is required for C. albicans elimination compared to bacteria that have to be used, which is readily accompanied by off-target heat and toxic singlet oxygen to damage normal cells, thus limiting its usefulness for antifungal applications. Here to overcome this, we develop a "three-in-one" biomimetic nanoplatform consisting of an oxygen-dissolved perfluorocarbon camouflaged by a photosensitizer-loaded vaginal epithelial cell membrane. With a cell membrane coating, the nanoplatform is capable of specifically binding with C. albicans at the superficial or deep vaginal epithelium, thereby centering the phototherapeutic agents on C. albicans. Meanwhile, the cell membrane coating endows the nanoplatform to competitively protect healthy cells from candidalysin-medicated cytotoxicity. Upon candidalysin sequestration, pore-forming on the surface of the nanoplatform accelerates release of the preloaded photosensitizer and oxygen, resulting in enhanced phototherapeutic power for improved anti-C. albicans efficacy under near-infrared irradiation. In an intravaginal C. albicans-infected murine model, treatment with the nanoplatform leads to a significantly decreased C. albicans burden, particularly when leveraging candidalysin for further elevated phototherapy and C. albicans inhibition. Also, the same trends hold true when using the nanoplatform to treat the clinical C. albicans isolates. Overall, this biomimetic nanoplatform can target and bind with C. albicans and simultaneously neutralize the candidalysin and then transform such toxins that are always considered a positive part in driving C. albicans infection with the power of enhancing phototherapy for improved anti-C. albicans efficacy.


Asunto(s)
Candida albicans , Candidiasis Vulvovaginal , Células Epiteliales , Humanos , Animales , Ratones , Células Cultivadas , Candidiasis Vulvovaginal/terapia , Fototerapia , Fármacos Fotosensibilizantes/farmacología
2.
Small ; 18(35): e2203292, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35859534

RESUMEN

An effective therapeutic strategy against methicillin-resistant Staphylococcus aureus (MRSA) that does not promote further drug resistance is highly desirable. While phototherapies have demonstrated considerable promise, their application toward bacterial infections can be limited by negative off-target effects to healthy cells. Here, a smart targeted nanoformulation consisting of a liquid perfluorocarbon core stabilized by a lipid membrane coating is developed. Using vancomycin as a targeting agent, the platform is capable of specifically delivering an encapsulated photosensitizer along with oxygen to sites of MRSA infection, where high concentrations of pore-forming toxins trigger on-demand payload release. Upon subsequent near-infrared irradiation, local increases in temperature and reactive oxygen species effectively kill the bacteria. Additionally, the secreted toxins that are captured by the nanoformulation can be processed by resident immune cells to promote multiantigenic immunity that protects against secondary MRSA infections. Overall, the reported approach for the on-demand release of phototherapeutic agents into sites of infection could be applied against a wide range of high-priority pathogens.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Liposomas/farmacología , Pruebas de Sensibilidad Microbiana , Fototerapia , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/prevención & control
3.
Artif Cells Nanomed Biotechnol ; 47(1): 4293-4304, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31810396

RESUMEN

Instability of silk fibroin nanoparticles (SFNPs) in physiologic condition hinders its application as drug delivery vehicle. Herein, indocyanine green (ICG) loaded silk fibroin nanoparticles (ICG-SFNPs) was firstly prepared and then crosslinked by proanthocyanidins to obtain the stable ICG-CSFNPs for killing the residual tumour niche under near infra-red irradiation (NIR) after surgery. The particle size and zeta potentials of ICG-CSFNPs was 120.1 nm and -40.4 mV, respectively. Moreover, ICG-CSFNPs exhibited good stability of particle size in the physiological medium. Meanwhile, the stable photothermal properties of ICG-CSFNPs were not compromised even after several cycles of NIR. Few of the ICG-CSFNPs were phagocytized by RAW264.7 macrophage in vitro, while they were easily internalized by C6 glioma cells, resulting in their significant toxicity on tumour cells after NIR. The pharmacokinetic study showed that ICG-CSFNPs had a longer blood circulation time than ICG-SFNPs, making them more distribution in glioma after intravenous administration in vivo. Meanwhile, the pharmacological study showed the more effective inhibition of tumour growth was exhibited by ICG-CSFNPs in C6 glioma-bearing mice after NIR. Overall, the cross-linked nanoparticles of silk fibroin may be a promising vehicle of ICG for photothermal therapy of glioma after surgical resection.


Asunto(s)
Fibroínas/química , Glioma/terapia , Verde de Indocianina/química , Verde de Indocianina/uso terapéutico , Nanopartículas/química , Fototerapia , Proantocianidinas/química , Animales , Línea Celular Tumoral , Portadores de Fármacos/química , Liberación de Fármacos , Glioma/diagnóstico por imagen , Glioma/patología , Verde de Indocianina/farmacocinética , Rayos Infrarrojos/uso terapéutico , Masculino , Ratones , Imagen Óptica , Ratas , Distribución Tisular
4.
Drug Deliv ; 25(1): 1302-1318, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29869524

RESUMEN

Currently, combination drug therapy is one of the most effective approaches to glioma treatment. However, due to the inherent dissimilar pharmacokinetics of individual drugs and blood brain barriers, it was difficult for the concomitant drugs to simultaneously be delivered to glioma in an optimal dose ratio manner. Herein, a cationic micellar core (Cur-M) was first prepared from d-α-tocopherol-grafted-ε-polylysine polymer to encapsulate the hydrophobic curcumin, followed by dopamine-modified-poly-γ-glutamic acid polymer further deposited on its surface as a anion shell through pH-sensitive linkage to encapsulate the hydrophilic doxorubicin (DOX) hydrochloride. By controlling the combinational Cur/DOX molar ratio at 3:1, a pH-sensitive core-shell nanoparticle (PDCP-NP) was constructed to simultaneously target the cancer stem cells (CSCs) and the differentiated tumor cells. PDCP-NP exhibited a dynamic diameter of 160.8 nm and a zeta-potential of -30.5 mV, while its core-shell structure was further confirmed by XPS and TEM. The ratiometric delivery capability of PDCP-NP was confirmed by in vitro and in vivo studies, in comparison with the cocktail Cur/DOX solution. Meanwhile, the percentage of CSCs in tumors was significantly decreased from 4.16% to 0.95% after treatment with PDCP-NP. Overall, PDCP-NP may be a promising carrier for the combination therapy with drug candidates having dissimilar physicochemical properties.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/química , Glioma/tratamiento farmacológico , Nanopartículas/química , Animales , Línea Celular Tumoral , Curcumina/administración & dosificación , Curcumina/química , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Ácido Glutámico/química , Humanos , Concentración de Iones de Hidrógeno , Masculino , Micelas , Células Madre Neoplásicas/efectos de los fármacos , Polilisina/química , Polímeros/química , Ratas , Ratas Sprague-Dawley , alfa-Tocoferol/química
5.
Drug Deliv ; 25(1): 364-375, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29366360

RESUMEN

Silk was easily dyed in traditional textile industry because of its strong affinity to many colorants. Herein, the biocompatible silk fibroin was firstly extracted from Bombyx mori silkworm cocoons. And SF nanoparticles (SFNPs) were prepared for dyeing indocyanine green (ICG) and construct a therapeutic nano-platform (ICG-SFNPs) for photo-thermal therapy of glioblastoma. ICG was easily encapsulated into SFNPs with a very high encapsulation efficiency reaching to 97.7 ± 1.1%. ICG-SFNPs exhibited a spherical morphology with a mean particle size of 209.4 ± 1.4 nm and a negative zeta potential of -31.9 mV, exhibiting a good stability in physiological medium. Moreover, ICG-SFNPs showed a slow release profile of ICG in vitro, and only 24.51 ± 2.27% of the encapsulated ICG was released even at 72 h. Meanwhile, ICG-SFNPs exhibited a more stable photo-thermal effect than free ICG after exposure to near-infrared irradiation. The temperature of ICG-SFNPs rapidly increased by 33.9 °C within 10 min and maintained for a longer time. ICG-SFNPs were also easily internalized with C6 tumor cells in vitro, and a strong red fluorescence of ICG was observed in cytoplasm for cellular imaging. In vivo imaging showed that ICG-SFNPs were effectively accumulated inside tumor site of C6 glioma-bearing Xenograft nude mice through vein injection. Moreover, the temperature of tumor site was rapidly rising up to kill tumor cells after local NIR irradiation. After treatment, its growth was completely suppressed with the relative tumor volume of 0.55 ± 033 while free ICG of 33.72 ± 1.90. Overall, ICG-SFNPs may be an effective therapeutic means for intraoperative phototherapy and imaging.


Asunto(s)
Fibroínas/química , Glioblastoma/diagnóstico por imagen , Verde de Indocianina/administración & dosificación , Verde de Indocianina/química , Nanopartículas/química , Seda/química , Animales , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Tamaño de la Partícula , Ratas
6.
Colloids Surf B Biointerfaces ; 160: 704-714, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29035818

RESUMEN

A poor percutaneous penetration capability for most topical anti-inflammatory drugs is one of the main causes compromising their therapeutic effects on psoriatic skin. Even though curcumin has shown a remarkable efficacy in the treatment of psoriasis, its effective penetration through the stratum corneum is still a major challenge during transdermal delivery. The aim of our study was to design skin-permeating nanoparticles (NPs) to facilitate delivery of curcumin to the deeper layers of the skin. A novel amphiphilic polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL) was synthesized and self-assembled into polymeric nanoparticles. The nanoparticles of VES-g-ε-PLL exhibiting an ultra-small hydrodynamic diameter (24.4nm) and a positive Zeta potential (19.6mV) provided a strong skin-penetrating ability in vivo. Moreover, curcumin could effectively be encapsulated in the polymeric nanoparticles with a drug loading capacity of 3.49% and an encapsulating efficiency of 78.45%. In order to prolong the retention time of the ultra-small curcumin-loaded nanoparticles (CUR-NPs) in the skin, silk fibroin was used as a hydrogel-based matrix to further facilitate topical delivery of the model drug. In vitro studies showed that CUR-NPs incorporated in silk fibroin hydrogel (CUR-NPs-gel) exhibited a slower release profile of curcumin than the plain CUR-gel, without compromising the skin penetration ability of CUR-NPs. In vivo studies on miquimod-induced psoriatic mice showed that CUR-NPs-gel exhibited a higher therapeutic effect than CUR-NPs as the former demonstrated a more powerful skin-permeating capability and a more effective anti-keratinization process. CUR-NPs-gel was therefore able to inhibit the expression of inflammatory cytokines (TNF-α, NF-κB and IL-6) to a greater extent. In conclusion, the permeable nanoparticle-gel system may be a potential carrier for the topical delivery of lipophilic anti-psoriatic drugs.


Asunto(s)
Curcumina/administración & dosificación , Fibroínas/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanopartículas/química , Psoriasis/tratamiento farmacológico , Piel/metabolismo , Administración Cutánea , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacocinética , Curcumina/química , Curcumina/farmacocinética , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Humanos , Masculino , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Tamaño de la Partícula , Polímeros/química , Psoriasis/patología , Seda/química
7.
Colloids Surf B Biointerfaces ; 158: 295-307, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28711016

RESUMEN

Severe toxicity and poor tumour penetration are two intrinsic limited factors to hinder the broad clinical application for most of first-line chemotherapeutics. In this study, a novel vitamin E succinate-grafted ε-polylysine (VES-g-PLL) polymer was synthesized by using ε-polylysine as backbone. By adjusting VES graft ratio, VES-g-PLL (50) with a theoretic VES graft ratio of 50% could self-assemble into a supermolecular micelle with a hydrodynamic diameter (Dh) of ca.20nm, and Zeta potential of 19.6mV. VES-g-PLL micelles themselves displayed a strong anti-tumour effect on glioma. The poorly water-soluble curcumin was effectively encapsulated in VES-g-PLL micelles with the drug loading amount and entrapment efficiency reaching 4.32% and 82.27%, respectively. In a physiologic medium, curcumin-loaded VES-g-PLL micelles (Cur-Micelles) not only remained stable without obvious drug leakage but also sustained the release of its encapsulated curcumin for a long time. Because of the ultra-small size and positively-charged surface, Cur-Micelles penetrated the deeper tumour zone than free curcumin, resulting in a significant inhibition of tumour spheroids growth. Moreover, in vivo strong antitumor effect of Cur-Micelles was also exhibited at assistance of ultrasound-targeted microbubble destruction and the real-time MRI imaging demonstrated a nearly complete suppression of glioma after 28days of treatment. TUNEL staining showed that the therapeutic mechanism of Cur-Micelles was relevant to the apoptosis of tumour cells. Finally, in vivo nontoxicity of Cur-Micelles against normal organs including heart, liver, spleen, lung and kidney tissues was also demonstrated by the HE staining. In conclusion, VES-g-PLL micelles may serve as a potential carrier for curcumin to enhance tumour penetration and improve therapeutic effect on glioma.


Asunto(s)
Curcumina/química , Micelas , Polilisina/química , Apoptosis/efectos de los fármacos , Curcumina/farmacología , Glioma/metabolismo , Humanos , Etiquetado Corte-Fin in Situ , Riñón/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Células MCF-7 , Bazo/metabolismo , alfa-Tocoferol/análogos & derivados , alfa-Tocoferol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA