RESUMEN
In population studies, dietary patterns clearly influence the development, progression, and therapeutic response of cancers. Nonetheless, interventional dietary trials have had relatively little impact on the prevention and treatment of malignant disease. Standardization of nutritional interventions combined with high-level mode-of-action studies holds the promise of identifying specific entities and pathways endowed with antineoplastic properties. Here, we critically review the effects of caloric restriction and more specific interventions on macro- and micronutrients in preclinical models as well as in clinical studies. We place special emphasis on the prospect of using defined nutrition-relevant molecules to enhance the efficacy of established anticancer treatments. SIGNIFICANCE: The avoidance of intrinsically hypercaloric and toxic diets contributes to the prevention and cure of cancer. In addition, specific diet-induced molecules such as ketone bodies and micronutrients, including specific vitamins, have drug-like effects that are clearly demonstrable in preclinical models, mostly in the context of immunotherapies. Multiple trials are underway to determine the clinical utility of such molecules.
Asunto(s)
Micronutrientes , Neoplasias , Humanos , Cuerpos Cetónicos , Micronutrientes/uso terapéutico , Neoplasias/prevención & control , VitaminasAsunto(s)
Neoplasias , Probióticos , Suplementos Dietéticos , Humanos , Inmunoterapia , Neoplasias/terapia , Probióticos/uso terapéuticoRESUMEN
Key stakeholders from the cancer research continuum met in May 2021 at the European Cancer Research Summit in Porto to discuss priorities and specific action points required for the successful implementation of the European Cancer Mission and Europe's Beating Cancer Plan (EBCP). Speakers presented a unified view about the need to establish high-quality, networked infrastructures to decrease cancer incidence, increase the cure rate, improve patient's survival and quality of life, and deal with research and care inequalities across the European Union (EU). These infrastructures, featuring Comprehensive Cancer Centres (CCCs) as key components, will integrate care, prevention and research across the entire cancer continuum to support the development of personalized/precision cancer medicine in Europe. The three pillars of the recommended European infrastructures - namely translational research, clinical/prevention trials and outcomes research - were pondered at length. Speakers addressing the future needs of translational research focused on the prospects of multiomics assisted preclinical research, progress in Molecular and Digital Pathology, immunotherapy, liquid biopsy and science data. The clinical/prevention trial session presented the requirements for next-generation, multicentric trials entailing unified strategies for patient stratification, imaging, and biospecimen acquisition and storage. The third session highlighted the need for establishing outcomes research infrastructures to cover primary prevention, early detection, clinical effectiveness of innovations, health-related quality-of-life assessment, survivorship research and health economics. An important outcome of the Summit was the presentation of the Porto Declaration, which called for a collective and committed action throughout Europe to develop the cancer research infrastructures indispensable for fostering innovation and decreasing inequalities within and between member states. Moreover, the Summit guidelines will assist decision making in the context of a unique EU-wide cancer initiative that, if expertly implemented, will decrease the cancer death toll and improve the quality of life of those confronted with cancer, and this is carried out at an affordable cost.
Asunto(s)
Neoplasias , Calidad de Vida , Europa (Continente)/epidemiología , Humanos , Neoplasias/epidemiología , Neoplasias/prevención & control , Medicina de Precisión , Investigación Biomédica TraslacionalRESUMEN
Amid controversial reports that COVID-19 can be treated with a combination of the antimalarial drug hydroxychloroquine (HCQ) and the antibiotic azithromycin (AZI), a clinical trial (ONCOCOVID, NCT04341207) was launched at Gustave Roussy Cancer Campus to investigate the utility of this combination therapy in cancer patients. In this preclinical study, we investigated whether the combination of HCQ+AZI would be compatible with the therapeutic induction of anticancer immune responses. For this, we used doses of HCQ and AZI that affect whole-body physiology (as indicated by a partial blockade in cardiac and hepatic autophagic flux for HCQ and a reduction in body weight for AZI), showing that their combined administration did not interfere with tumor growth control induced by the immunogenic cell death inducer oxaliplatin. Moreover, the HCQ+AZI combination did not affect the capacity of a curative regimen (cisplatin + crizotinib + PD-1 blockade) to eradicate established orthotopic lung cancers in mice. In conclusion, it appears that HCQ+AZI does not interfere with the therapeutic induction of therapeutic anticancer immune responses.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Azitromicina/administración & dosificación , Tratamiento Farmacológico de COVID-19 , Hidroxicloroquina/administración & dosificación , Neoplasias/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Azitromicina/farmacocinética , COVID-19/inmunología , COVID-19/virología , Línea Celular Tumoral , Cisplatino/administración & dosificación , Cisplatino/farmacocinética , Ensayos Clínicos Fase II como Asunto , Crizotinib/administración & dosificación , Crizotinib/farmacocinética , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Quimioterapia Combinada/métodos , Femenino , Francia , Humanos , Hidroxicloroquina/farmacocinética , Ratones , Neoplasias/inmunología , Oxaliplatino/administración & dosificación , Oxaliplatino/farmacocinética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificaciónRESUMEN
Hormone receptor (HR)+ breast cancer (BC) causes most BC-related deaths, calling for improved therapeutic approaches. Despite expectations, immune checkpoint blockers (ICBs) are poorly active in patients with HR+ BC, in part reflecting the lack of preclinical models that recapitulate disease progression in immunocompetent hosts. We demonstrate that mammary tumors driven by medroxyprogesterone acetate (M) and 7,12-dimethylbenz[a]anthracene (D) recapitulate several key features of human luminal B HR+HER2- BC, including limited immune infiltration and poor sensitivity to ICBs. M/D-driven oncogenesis is accelerated by immune defects, demonstrating that M/D-driven tumors are under immunosurveillance. Safe nutritional measures including nicotinamide (NAM) supplementation efficiently delay M/D-driven oncogenesis by reactivating immunosurveillance. NAM also mediates immunotherapeutic effects against established M/D-driven and transplantable BC, largely reflecting increased type I interferon secretion by malignant cells and direct stimulation of immune effector cells. Our findings identify NAM as a potential strategy for the prevention and treatment of HR+ BC.
Asunto(s)
Neoplasias de la Mama/terapia , Inmunoterapia/métodos , Niacinamida/administración & dosificación , Receptor ErbB-2/inmunología , 9,10-Dimetil-1,2-benzantraceno , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/inmunología , Progresión de la Enfermedad , Femenino , Humanos , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/prevención & control , Acetato de Medroxiprogesterona , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor ErbB-2/metabolismo , Análisis de SupervivenciaRESUMEN
The current epidemic of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) calls for the development of inhibitors of viral replication. Here, we performed a bioinformatic analysis of published and purported SARS-CoV-2 antivirals including imatinib mesylate that we found to suppress SARS-CoV-2 replication on Vero E6 cells and that, according to the published literature on other coronaviruses is likely to act on-target, as a tyrosine kinase inhibitor. We identified a cluster of SARS-CoV-2 antivirals with characteristics of lysosomotropic agents, meaning that they are lipophilic weak bases capable of penetrating into cells. These agents include cepharentine, chloroquine, chlorpromazine, clemastine, cloperastine, emetine, hydroxychloroquine, haloperidol, ML240, PB28, ponatinib, siramesine, and zotatifin (eFT226) all of which are likely to inhibit SARS-CoV-2 replication by non-specific (off-target) effects, meaning that they probably do not act on their 'official' pharmacological targets, but rather interfere with viral replication through non-specific effects on acidophilic organelles including autophagosomes, endosomes, and lysosomes. Imatinib mesylate did not fall into this cluster. In conclusion, we propose a tentative classification of SARS-CoV-2 antivirals into specific (on-target) versus non-specific (off-target) agents based on their physicochemical characteristics.
Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Neumonía Viral/metabolismo , Replicación Viral/efectos de los fármacos , Animales , Antivirales/farmacología , COVID-19 , Muerte Celular/efectos de los fármacos , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Hidroxicloroquina/farmacología , Mesilato de Imatinib/farmacología , Lisosomas/efectos de los fármacos , Pandemias , Neumonía Viral/virología , Inhibidores de Proteínas Quinasas/farmacología , ARN Viral/efectos de los fármacos , SARS-CoV-2 , Células Vero , Carga Viral/efectos de los fármacosRESUMEN
BACKGROUND: Intratumorous immunotherapy for cancer is currently thriving. The aim of such local strategy is to improve the therapeutic index of these treatments, for higher on-target/on-tumor activity and less on-target/off-tumor adverse events. Strategies allowing for slow release of anti-CTLA4 in the tumor microenvironment could improve their clinical efficacy.The purpose of the study was to develop a radiopaque delivery platform to improve the targeting and exposure of intratumorous anti-CTLA4 antibodies for cancer immunotherapy. METHODS: Pickering emulsions of anti-CTLA4 antibodies were formulated with radiopaque ethiodized oil and poly-lactic-co-glycolic acid (PLGA) nanoparticles. We characterized the microscopic aspect and stability of such emulsions using Turbiscan. We monitored the release of anti-CTLA4 over time from these emulsions and evaluated their structure using mass spectrometry. We then tested the functionality of the released antibodies by preforming ex vivo competitive binding assays. Finally, we assessed the in vivo efficacy of intratumorous anti-CTLA4 Pickering emulsions. RESULTS: Pickering emulsions of ethiodized oil and PLGA nanoparticles (PEEPs) resulted in a radiopaque water-in-oil emulsion with average internal phase droplet size of 42±5 µm at day 7. Confocal microscopy showed that anti-CTLA4 antibodies were effectively encapsulated by ethiodized oil with PLGA nanoparticles located at the interface between the aqueous and the oily phase. Turbiscan analysis showed that emulsions were stable with continuous and progressive release of anti-CTLA4 antibodies reaching 70% at 3 weeks. Structural and functional analysis of the released antibodies did not show significant differences with native anti-CTLA4 antibodies. Finally, intratumorous anti-CTLA4 PEEPs were able to eradicate tumors and cure mice in a syngeneic immunocompetent preclinical tumor model. CONCLUSION: Pickering emulsions of ethiodized oil and PLGA is an innovative radiopaque delivery platform that does not alter the functionality of anti-CTLA4 immune checkpoint antibodies. Beyond local anti-CTLA4 applications, these emulsions might be used with other therapeutic molecules for optimal intratumorous or intra-arterial delivery of novel cancer immunotherapies.
Asunto(s)
Antígeno CTLA-4/química , Emulsiones/química , Aceite Etiodizado/química , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Nanopartículas/química , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacologíaRESUMEN
The translocation of the protein high mobility group box 1 (HMGB1) from the nucleus to the cytoplasm and its secretion or passive release through the permeabilized plasma membrane, constitutes a major cellular danger signal. Extracellular HMGB1 can interact with pattern recognition receptors to stimulate pro-inflammatory and immunostimulatory pathways. Here, we developed a screening assay to identify pharmacological agents endowed with HMGB1 releasing properties. For this, we took advantage of the "retention using selective hooks" (RUSH) system in which a streptavidin-NLS3 fusion protein was used as a nuclear hook to sequestrate streptavidin-binding peptide (SBP) fused with HMGB1 and green fluorescent protein (GFP). When combined with biotin, which competitively disrupts the interaction between streptavidin-NLS3 and HMGB1-SBP-GFP, immunogenic cell death (ICD) inducers such as anthracyclines were able to cause the nucleo-cytoplasmic translocation of HMGB1-SBP-GFP. This system, was used in a high-content screening (HCS) campaign for the identification of HMGB1 releasing agents. Hits fell into three functional categories: known ICD inducers, microtubule inhibitors and epigenetic modifiers. These agents induced ICD through a panoply of distinct mechanisms. Their effective action was confirmed by multiple methods monitoring nuclear, cytoplasmic and extracellular HMGB1 pools, both in cultured human or murine cells, as well as in mouse plasma.
Asunto(s)
Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Proteína HMGB1/metabolismo , Transporte de Proteínas/efectos de los fármacos , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/metabolismo , Femenino , Proteína HMGB1/análisis , Humanos , Ratones , Ratones Endogámicos C57BL , Moduladores de Tubulina/farmacologíaRESUMEN
Cancer cells are subjected to constant selection by the immune system, meaning that tumors that become clinically manifest have managed to subvert or hide from immunosurveillance. Immune control can be facilitated by induction of autophagy, as well as by polyploidization of cancer cells. While autophagy causes the release of ATP, a chemotactic signal for myeloid cells, polyploidization can trigger endoplasmic reticulum stress with consequent exposure of the "eat-me" signal calreticulin on the cell surface, thereby facilitating the transfer of tumor antigens into dendritic cells. Hence, both autophagy and polyploidization cause the emission of adjuvant signals that ultimately elicit immune control by CD8+ T lymphocytes. We investigated the possibility that autophagy and polyploidization might also affect the antigenicity of cancer cells by altering the immunopeptidome. Mass spectrometry led to the identification of peptides that were presented on major histocompatibility complex (MHC) class I molecules in an autophagy-dependent fashion or that were specifically exposed on the surface of polyploid cells, yet lost upon passage of such cells through immunocompetent (but not immunodeficient) mice. However, the preferential recognition of autophagy-competent and polyploid cells by the innate and cellular immune systems did not correlate with the preferential recognition of such peptides in vivo. Moreover, vaccination with such peptides was unable to elicit tumor growth-inhibitory responses in vivo. We conclude that autophagy and polyploidy increase the immunogenicity of cancer cells mostly by affecting their adjuvanticity rather than their antigenicity.
Asunto(s)
Adyuvantes Inmunológicos , Antígenos de Neoplasias/inmunología , Muerte Celular , Vigilancia Inmunológica , Neoplasias/inmunología , Adenosina Trifosfato/metabolismo , Animales , Estrés del Retículo Endoplásmico , Humanos , Ratones , Monitorización Inmunológica , Transducción de SeñalRESUMEN
The gut microbiota is involved in a lot of crucial physiological functions and maintains a symbiotic relationship with the host. Lately, in light of new evidences, an unexpected role of commensals has been depicted. Several studies addressing the role of gut microbiota in the immunomodulatory properties of anti-cancer regimens, such as immunotherapy and chemotherapy, reveal that commensals are required to mount complete and efficient antitumor immune responses. Therefore, exploration of microbiota-derived compounds in the future could represent a therapeutic option in the armamentarium of cancer treatments.
Asunto(s)
Antineoplásicos/uso terapéutico , Microbioma Gastrointestinal , Neoplasias/microbiología , Neoplasias/terapia , Animales , Terapia Biológica/tendencias , Resistencia a Antineoplásicos , Disbiosis/etiología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Humanos , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Resultado del TratamientoRESUMEN
Anticancer immune responses can be considered a desirable form of autoimmunity that may be profoundly shaped by the microbiome. Here, we discuss evidence for the microbiome's influence on anti-tumor immunosurveillance, including those that are indirect and can act at a distance, and we put forward hypotheses regarding mechanisms of how these effects are implemented. These may involve cross-reactivity between microbial and tumor antigens shaping T cell repertoires and/or microbial products stimulating pattern recognition receptors that influence the type and intensity of immune responses. Understanding how the microbiome impacts natural cancer immunosurveillance as well as treatment-induced immune responses will pave the way for more effective therapies and prophylactics.
Asunto(s)
Terapia Biológica , Microbiota , Neoplasias/inmunología , Neoplasias/terapia , Animales , Disbiosis , Humanos , Hipótesis de la Higiene , Monitorización InmunológicaRESUMEN
Beyond cancer-cell intrinsic factors, the immune status of the host has a prognostic impact on patients with cancer and influences the effects of conventional chemotherapies. Metastatic melanoma is intrinsically immunogenic, thereby facilitating the search for immune biomarkers of clinical responses to cytotoxic agents. Here, we show that a multi-tyrosine kinase inhibitor, sorafenib, upregulates interleukin (IL)-15Rα in vitro and in vivo in patients with melanoma, and in conjunction with natural killer (NK) group 2D (NKG2D) ligands, contributes to the Th1 polarization and accumulation of peripheral CD4(+)NKG2D(+) T cells. Hence, the increase of blood CD4(+)NKG2D(+) T cells after two cycles of sorafenib (combined with temozolomide) was associated with prolonged survival in a prospective phase I/II trial enrolling 63 patients with metastatic melanoma who did not receive vemurafenib nor immune checkpoint-blocking antibodies. In contrast, in metastatic melanoma patients treated with classical treatment modalities, this CD4(+)NKG2D(+) subset failed to correlate with prognosis. These findings indicate that sorafenib may be used as an "adjuvant" molecule capable of inducing or restoring IL-15Rα/IL-15 in tumors expressing MHC class I-related chain A/B (MICA/B) and on circulating monocytes of responding patients, hereby contributing to the bioactivity of NKG2D(+) Th1 cells.
Asunto(s)
Subunidad alfa del Receptor de Interleucina-15/inmunología , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Niacinamida/análogos & derivados , Compuestos de Fenilurea/uso terapéutico , Células TH1/inmunología , Adulto , Anciano , Antígenos CD4/inmunología , Procesos de Crecimiento Celular/inmunología , Femenino , Humanos , Interleucina-15/inmunología , Masculino , Melanoma/sangre , Persona de Mediana Edad , Niacinamida/uso terapéutico , Sorafenib , Células TH1/efectos de los fármacos , Adulto JovenRESUMEN
Most anticancer agents are thought to act through direct induction of tumoral, stromal and endothelial cell death by apoptosis or necrosis. In a 2008 issue of Bulletin de l'Académie Nationale de Médecine, we described an alternative (or complementary) theory whereby the immune system participates in the antitumoral effects of some chemotherapy or radiotherapy regimens by promoting an immunogenic cell death pathway. In particular, we showed the critical importance of two pre-mortem stressors that determine the immunogenicity of dying tumor cells. The first, an ER stress response culminating in calreticuline exposure at the tumor cell surface, is mandatory for the uptake and efficient phagocytosis of apoptotic bodies by dendritic cells. In the second, autophagy leads to the release of ATP by dying tumor cells, resulting in the recruitment of inflammatory phagocytes and antigen-presenting cells, and also triggering the inflammasome that causes IL-1beta release and CD8+ T cell polarization. The tumor microenvironment changes following chemotherapy, favoring sequential accumulation of a series of innate and cognate effectors that act in a coordinated fashion to promote tumor eradication. These findings will help to identify immune predictors of the response to conventional anticancer treatments and to design innovative combinatorial immunochemotherapy regimens.
Asunto(s)
Presentación de Antígeno/efectos de los fármacos , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Modelos Inmunológicos , Neoplasias/inmunología , Adenosina Trifosfato/metabolismo , Animales , Antígenos de Neoplasias/inmunología , Antineoplásicos/uso terapéutico , Apoptosis/inmunología , Autofagia/inmunología , Calreticulina/metabolismo , Citocinas/inmunología , Células Dendríticas/inmunología , Estrés del Retículo Endoplásmico , Proteína HMGB1/fisiología , Humanos , Inflamasomas/inmunología , Interleucina-1beta/metabolismo , Ratones , Neoplasias/tratamiento farmacológico , Transporte de Proteínas , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Receptor Toll-Like 4/inmunologíaRESUMEN
Systemic anticancer chemotherapy is immunosuppressive and mostly induces nonimmunogenic tumor cell death. Here, we show that even in the absence of any adjuvant, tumor cells dying in response to anthracyclins can elicit an effective antitumor immune response that suppresses the growth of inoculated tumors or leads to the regression of established neoplasia. Although both antracyclins and mitomycin C induced apoptosis with caspase activation, only anthracyclin-induced immunogenic cell death was immunogenic. Caspase inhibition by Z-VAD-fmk or transfection with the baculovirus inhibitor p35 did not inhibit doxorubicin (DX)-induced cell death, yet suppressed the immunogenicity of dying tumor cells in several rodent models of neoplasia. Depletion of dendritic cells (DCs) or CD8+T cells abolished the immune response against DX-treated apoptotic tumor cells in vivo. Caspase inhibition suppressed the capacity of DX-killed cells to be phagocytosed by DCs, yet had no effect on their capacity to elicit DC maturation. Freshly excised tumors became immunogenic upon DX treatment in vitro, and intratumoral inoculation of DX could trigger the regression of established tumors in immunocompetent mice. These results delineate a procedure for the generation of cancer vaccines and the stimulation of anti-neoplastic immune responses in vivo.
Asunto(s)
Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Doxorrubicina/farmacología , Mitomicina/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Clorometilcetonas de Aminoácidos/farmacología , Animales , Antibióticos Antineoplásicos/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Inhibidores de Caspasas , Línea Celular Tumoral , Células Dendríticas/inmunología , Doxorrubicina/uso terapéutico , Immunoblotting , Etiquetado Corte-Fin in Situ , Ratones , Mitomicina/uso terapéutico , Neoplasias/prevención & control , Ratas , Vacunación/métodos , Proteínas Virales/genética , Proteínas Virales/farmacologíaRESUMEN
Dendritic cells (DCs) and natural killer (NK) cells play a critical role in early defences against cancer and infections. They specialise in complementary functions, including IL-12 or IFN-alpha/beta secretion and antigen presentation for the former, and IFN-gamma secretion and killing of infected or tumour cells for the latter. Both DCs and NK cells are also sensors of the immune system that have developed different, but partially overlapping, systems to identify pathology associated danger signals. Evidence of NK-DC interaction has accumulated recently. This interaction may lead to NK cell activation, DC activation, or apoptosis depending on the activation status of both cell types. Thus, the outcome of NK-DC crosstalk is likely to influence both innate and adaptive immune responses. This review addresses the molecular mechanisms under-lying the different NK-DC interactions, and their in vivo significance in anti-tumour or antimicrobial immunity. Finally, we discuss the potential clinical implications of this new field.