Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
IEEE Trans Nanobioscience ; 22(3): 655-663, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37015652

RESUMEN

In recent years, nanoparticles camouflaged by red blood cell membrane (RBCM) have become a potential nano-drug delivery platform due to their good biocompatibility and immune evasion capability. Here, a multifunctional drug nanocarrier based on RBCM camouflaged mesoporous silica nanorods (MSNR) is presented, which can be used in pH and near-infrared (NIR) light triggered synergistic chemo-photothermal killing of cancer cells. To fabricate such a nanocarrier, MSNR and RBCM were prepared by the sol-gel method and modified hypotonic lysis method, respectively. Drugs were loaded into the pores of MSNR. Finally, RBCM was coated on the surface of MSNR by extrusion through a polycarbonate membrane. The advantages of the nanocarrier include: 1) MSNR can induce more cellular uptake than sphere shaped mesoporous silica nanoparticles. 2) The RBCM can reduce drug leakage and prevent clearance of the nanocarriers by macrophages. 3) By simultaneous loading doxorubicin (DOX) and indocyanine green (ICG), pH and NIR triggered synergistic chemo-photothermal therapy can be realized. In the experiment, we studied the drug releasing and cellular uptake of the nanocarriers in a breast cancer cell line (SKBR3 cells), in which a sufficient killing effect was observed. Such a multifunctional drug nanocarrier holds a broad application prospect in cancer treatment.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Nanotubos , Dióxido de Silicio , Terapia Fototérmica , Fototerapia , Doxorrubicina/farmacología , Eritrocitos , Línea Celular Tumoral
2.
Nanoscale ; 13(44): 18546-18557, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34730162

RESUMEN

The exploration of MXenes, especially nitride MXenes, in the field of theranostic nanomedicine is still in its infancy. Here, towards synergistic chemo-photothermal oncotherapy, we demonstrate the first kind of 2D titanium nitride (Ti2N) MXene-based nanosystem (Ti2N@oSi) for dual-strategy synergistic oncotherapy. The unique structure of Ti2N nanosheets endows the drug carriers with an ultrahigh loading capacity of 796.3% and an excellent NIR photothermal conversion efficiency of 41.6% for chemo-photothermal therapy. After being coated with a biodegradable organosilica shell, the Ti2N@oSi nanocarriers show excellent characteristics of tumor targeting, pH/glutathione/photothermal-responsive drug release and dual-drug combination chemotherapy. Both in vitro and in vivo therapeutic evaluations demonstrate the pronounced tumor growth inhibition effect and superior biocompatibility of Ti2N@oSi nanocarriers. The excellent drug loading ability, photothermal conversion ability and surface modifiability of Ti2N open up new opportunities for tumor microenvironment-targeted synergistic oncotherapy. This work is supposed to broaden the application of MXenes in nanomedicine and, particularly, provide the first sight to the biomedical application of nitride MXenes.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Línea Celular Tumoral , Doxorrubicina , Portadores de Fármacos , Liberación de Fármacos , Fototerapia , Nanomedicina Teranóstica , Titanio
3.
ACS Appl Mater Interfaces ; 11(6): 5896-5902, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30668091

RESUMEN

As one of the novel two-dimensional nanomaterials, black phosphorus nanosheets (BP NS) have been proven to be excellent carrier materials for drugs, owing to their fine optical properties and biocompatibility. In this work, a composite drug nanocarrier based on BP NS is proposed, which can perform a synergetic and targeted chemophotothermal therapy of acute lymphoblastic leukemia (ALL). First, BP NS were prepared by an improved liquid exfoliation technique. Then, polyethylene glycol (PEG) was modified on the surfaces of BP NS through electrostatic adsorption. Drug molecules can also be loaded onto the BP NS via electrostatic adsorption. The PEG layer can effectively protect the interior BP NS from water and air to enhance their physiological stability. The obtained PEGylated BP NS (BP NS@PEG) not only demonstrated an excellent photothermal conversion efficiency and photothermal stability but also exhibited a good pH and photothermal dual-responsive drug release behavior. In addition, the BP NS@PEG were further modified with Sgc8 aptamers through covalent bonding. The aptamers provided an efficient specificity toward ALL cells (CCRF-CEM) and greatly increased the endocytosis of the nanocarriers through a receptor-mediated manner, which can further improve the therapeutic effect. Hence, the presented BP NS-based multifunctional nanocarrier can achieve a targeted and synergetic chemophotothermal therapy of ALL, which shows a promising potential in improving the curative efficiency.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Fósforo/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Liberación de Fármacos , Sinergismo Farmacológico , Humanos , Rayos Infrarrojos , Nanopartículas/toxicidad , Fototerapia , Polietilenglicoles/química , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Electricidad Estática
4.
Nanotechnology ; 29(28): 285602, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-29671751

RESUMEN

Single molecule localization microscopy (SMLM) is a powerful tool for imaging biological targets at the nanoscale. In this report, we present SMLM imaging of telomeres and centromeres using fluorescence in situ hybridization (FISH). The FISH probes were fabricated by decorating CdSSe/ZnS quantum dots (QDs) with telomere or centromere complementary DNA strands. SMLM imaging experiments using commercially available peptide nucleic acid (PNA) probes labeled with organic fluorophores were also conducted to demonstrate the advantages of using QDs FISH probes. Compared with the PNA probes, the QDs probes have the following merits. First, the fluorescence blinking of QDs can be realized in aqueous solution or PBS buffer without thiol, which is a key buffer component for organic fluorophores' blinking. Second, fluorescence blinking of the QDs probe needs only one excitation light (i.e. 405 nm). While fluorescence blinking of the organic fluorophores usually requires two illumination lights, that is, the activation light (i.e. 405 nm) and the imaging light. Third, the high quantum yield, multiple switching times and a good optical stability make the QDs more suitable for long-term imaging. The localization precision achieved in telomeres and centromeres imaging experiments is about 30 nm, which is far beyond the diffraction limit. SMLM has enabled new insights into telomeres or centromeres on the molecular level, and it is even possible to determine the length of telomere and become a potential technique for telomere-related investigation.


Asunto(s)
Centrómero/metabolismo , Hibridación Fluorescente in Situ , Puntos Cuánticos/química , Semiconductores , Imagen Individual de Molécula/métodos , Telómero/metabolismo , Compuestos de Cadmio/química , Células HeLa , Humanos , Rayos Láser , Sondas Moleculares/química , Puntos Cuánticos/ultraestructura , Sulfuros/química , Compuestos de Zinc/química
5.
IEEE Trans Nanobioscience ; 13(1): 55-60, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24594515

RESUMEN

Telomerase is an important cancer biomarker and therapeutic target. Here, we present a new stimuli-responsive drug release method, using telomerase as the trigger. To realize this kind of delivery, mesoporous silica nanoparticle with an inner metal core is used as the nanocarrier. The metal core serves as the surface enhanced Raman scattering (SERS) substrate and produces SERS signal for the tracing of the nanocarrier. Drugs are first loaded inside the pores of the nanocarriers. Then these pores are sealed by a special oligonucleotide strand (CAP1), which contains a telomeric repeat complementary sequence and a telomerase substrate primer sequence. The CAP1 strand blocks the pores and excludes possible drug leakage. Telomerase can recognize the TS primer sequence and add tandem telomeric repeats (TE) to the TS primer. Then the elongated TE sequence can hybridize with its complementary sequence, resulting in a hairpin structure which subsequently falls off the nanocarrier, opens the pore and releases the loaded drugs. In this way, drugs can only be released in cancer cells with a high telomerase expression level. This cancer cell specific and SERS traceable nanocarrier has a great potential in improving the therapeutic efficacy as well as the investigation of nanomaterial based drug delivery dynamics.


Asunto(s)
Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Nanopartículas/administración & dosificación , Oligopéptidos/metabolismo , Telomerasa/metabolismo , Antineoplásicos/química , Línea Celular , Doxorrubicina/química , Portadores de Fármacos/química , Oro/química , Células HeLa , Humanos , Microscopía Electrónica de Transmisión , Nanopartículas/química , Nanotubos/química , Oligopéptidos/química , Dióxido de Silicio/química , Plata/química , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA