Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Microb Biotechnol ; 17(2): e14382, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38345183

RESUMEN

Among the plant-associated microorganisms, the so-called endophytes continue to attract much attention because of their ability not only to protect host plants from biotic and abiotic stress factors, but also the potential to produce bioactive secondary metabolites. The latter property can elicit growth-promoting effects on plants, as well as boost the production of plant-specific secondary metabolites with valuable pharmacological properties. In addition, endophyte-derived secondary metabolites may be a rich source for the discovery of drugs to treat various diseases, including infections and cancer. However, the full potential of endophytes to produce bioactive secondary metabolites is often not revealed upon conventional cultivation in the laboratory. New advances in genomics and metabolic engineering offer exciting opportunities for the exploration and exploitation of endophytes' biosynthetic potential. This review focuses on bacterial endophytes of medicinal plants, some of their secondary metabolites and recent advances in deciphering their biosynthesis. The latter may assist in genetic engineering efforts aimed at the discovery of novel bioactive compounds with the potential to be developed into drugs.


Asunto(s)
Plantas Medicinales , Plantas Medicinales/microbiología , Endófitos/metabolismo , Descubrimiento de Drogas , Bacterias/genética
2.
Planta Med ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673090

RESUMEN

Plant in vitro cultures are potential sources for secondary metabolites. However, low productivity is often a major drawback for industrial application. Elicitation is an important strategy to improve product formation in vitro. In this context, endophytes are of special interest as biotic elicitors due to their possible interaction with the metabolism of the host plant. A total of 128 bacterial endophytes were isolated from the medicinal plant Bergenia pacumbis and taxonomically classified using 16S rRNA gene sequencing. Five strains belonging to different genera were grown in lysogeny broth and tryptic soy broth medium and cells as well as spent media were used as elicitors in cell suspension cultures of B. pacumbis. Production of the main bioactive compound bergenin was enhanced 3-fold (964 µg/g) after treatment with cells of Moraxella sp. or spent tryptic soy broth medium of Micrococcus sp. These results indicate that elicitation of plant cell suspension cultures with endophytic bacteria is a promising strategy for enhancing the production of desired plant metabolites.

3.
Appl Environ Microbiol ; 88(6): e0251021, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35108081

RESUMEN

Endophytic fungi have been recognized as prolific producers of chemically diverse secondary metabolites. In this work, we describe a new representative of the order Helotiales isolated from the medicinal plant Bergenia pacumbis. Several bioactive secondary metabolites were produced by this Helotiales sp. BL 73 isolate grown on rice medium, including cochlioquinones and isofusidienols. Sequencing and analysis of the approximately 59-Mb genome revealed at least 77 secondary metabolite biosynthesis gene clusters, of which several could be associated with detected compounds or linked to previously reported molecules. Four terpene synthase genes identified in the BL73 genome were codon optimized and expressed, together with farnesyl-, geranyl-, and geranylgeranyl-pyrophosphate synthases, in Streptomyces spp. An analysis of recombinant strains revealed the production of linalool and its oxidized form, terpenoids typically associated with plants, as well as a yet unidentified terpenoid. This study demonstrates the importance of a complex approach to the investigation of the biosynthetic potential of endophytic fungi using both conventional methods and genome mining. IMPORTANCE Endophytic fungi represent an as yet underexplored source of secondary metabolites, of which some may have industrial and medical applications. We isolated a slow-growing fungus belonging to the order Helotiales from the traditional medicinal plant Bergenia pacumbis and characterized its potential to biosynthesize secondary metabolites. We used cultivation of the isolate with a subsequent analysis of compounds produced, bioinformatics-based mining of the genome, and heterologous expression of several terpene synthase genes. Our study revealed that this Helotiales isolate has enormous potential to produce structurally diverse natural products, including polyketides, nonribosomally synthesized peptides, terpenoids, and ribosomally synthesized and posttranslationally modified peptides (RiPPs). Identification of meroterpenoids and xanthones, along with establishing a link between these molecules and their putative biosynthetic genes, sets the stage for investigation of the respective biosynthetic pathways. The heterologous production of terpenoids suggests that this approach can be used for the discovery of new compounds belonging to this chemical class using Streptomyces bacteria as hosts.


Asunto(s)
Ascomicetos , Streptomyces , Ascomicetos/genética , Vías Biosintéticas/genética , Familia de Multigenes , Metabolismo Secundario , Streptomyces/genética
4.
Appl Microbiol Biotechnol ; 105(18): 6649-6668, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34468803

RESUMEN

Medicinal plants have been used by mankind since ancient times, and many bioactive plant secondary metabolites are applied nowadays both directly as drugs, and as raw materials for semi-synthetic modifications. However, the structural complexity often thwarts cost-efficient chemical synthesis, and the usually low content in the native plant necessitates the processing of large amounts of field-cultivated raw material. The biotechnological manufacturing of such compounds offers a number of advantages like predictable, stable, and year-round sustainable production, scalability, and easier extraction and purification. Plant cell and tissue culture represents one possible alternative to the extraction of phytochemicals from plant material. Although a broad commercialization of such processes has not yet occurred, ongoing research indicates that plant in vitro systems such as cell suspension cultures, organ cultures, and transgenic hairy roots hold a promising potential as sources for bioactive compounds. Progress in the areas of biosynthetic pathway elucidation and genetic manipulation has expanded the possibilities to utilize plant metabolic engineering and heterologous production in microorganisms. This review aims to summarize recent advances in the in vitro production of high-value plant secondary metabolites of medicinal importance.Key points• Bioactive plant secondary metabolites are important for current and future use in medicine• In vitro production is a sustainable alternative to extraction from plants or costly chemical synthesis• Current research addresses plant cell and tissue culture, metabolic engineering, and heterologous production.


Asunto(s)
Raíces de Plantas , Plantas Medicinales , Biotecnología , Fitoquímicos , Células Vegetales
5.
ACS Omega ; 6(3): 2184-2191, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33521458

RESUMEN

In the search for new antibiotics, several fungal endophytes were isolated from the medicinal plant Leontopodium nivale subsp. alpinum (Edelweiss). The extract from one of these fungi classified as Akanthomyces sp. displayed broad-spectrum antibiotic activity against gram-negative bacteria and fungi. Further investigation into the composition of this extract using bioactivity-guided fractionation, HRMS, and nuclear magnetic resonance revealed two new 4-hydroxy-2-pyridone alkaloids (1, 2) and emestrin (3), an epidithiodioxopiperazine not previously known to be produced by a member of Cordycipitaceae. Further testing of purified compounds 1 and 2 proved that they are devoid of antibiotic activity, and all the activities observed in the crude extract could be assigned to emestrin (3), whose configuration was confirmed by crystallographic data. This study demonstrates, for the first time, that endophytic fungi from Edelweiss can produce new compounds, prompting further investigation into them for drug discovery.

6.
Nat Prod Res ; 35(7): 1090-1096, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31303055

RESUMEN

The culture broth of endophytic Streptomyces sp. AB100, isolated from the shoots of medicinal plant Atropa belladonna (L.) was investigated for the presence of antibacterial compounds. After initial testing followed by bioactivity-guided fractionation, six new piperazic acid (PA)-containing congeners of two known peptides, JBIR-39 and JBIR-40, were identified by HR-MS/MS and NMR analyses. Only the dehydroxylated hexapeptidic derivatives with unusual incorporation of four PA moieties exhibited weak antibacterial activity against Gram-positive test organism Bacillus subtilis. A 16S rDNA-based phylogenetic tree of known Streptomyces spp. producing PA-containing hexapeptides isolated from different habitats and endophyte Streptomyces AB100 showed considerable diversity, suggesting that these metabolites may play an important environmental role beyond their antibacterial activity.


Asunto(s)
Atropa belladonna/microbiología , Endófitos/química , Péptidos/farmacología , Plantas Medicinales/química , Piridazinas/farmacología , Streptomyces/química , Streptomyces/aislamiento & purificación , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , ADN Ribosómico/genética , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Filogenia , Brotes de la Planta/microbiología , Espectrometría de Masas en Tándem
7.
J Nat Prod ; 83(8): 2381-2389, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32786880

RESUMEN

Extracts from Streptomyces sp. S4.7 isolated from the rhizosphere of edelweiss, an alpine medicinal plant, exhibited activity against Gram-positive bacteria. LC-HRMS analyses of the extracts resulted in the detection of two unknown, structurally related lipopeptides that were assumed to be responsible for the antibiotic activity. LC-MS guided isolation and structure elucidation of viennamycins A and B (1 and 2) by HR-MS/MS, 1D and 2D NMR, and Marfey's analyses revealed them to be novel compounds, with viennamycin A containing cysteic acid, a unique feature for lipopeptides. Tests for antibacterial, antifungal, and cytotoxic activities of purified viennamycins, both with and without divalent cations, did not reveal any bioactivity, suggesting that their biological function, which could not be determined in the tests used, is atypical for lipopeptides. The genome of Streptomyces sp. S4.7 was sequenced and analyzed, revealing the viennamycin biosynthetic gene cluster. Detailed bioinformatics-based analysis of the viennamycin gene cluster allowed elucidation of the biosynthetic pathway for these lipopeptides.


Asunto(s)
Lipopéptidos/biosíntesis , Streptomyces/metabolismo , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Lipopéptidos/farmacología , Pruebas de Sensibilidad Microbiana , Análisis Espectral/métodos
8.
Front Microbiol ; 10: 2531, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781058

RESUMEN

The rhizosphere of plants is enriched in nutrients facilitating growth of microorganisms, some of which are recruited as endophytes. Endophytes, especially Actinobacteria, are known to produce a plethora of bioactive compounds. We hypothesized that Leontopodium nivale subsp. alpinum (Edelweiss), a rare alpine medicinal plant, may serve as yet untapped source for uncommon Actinobacteria associated with this plant. Rhizosphere soil of native Alpine plants was used, after physical and chemical pre-treatments, for isolating Actinobacteria. Isolates were selected based on morphology and identified by 16S rRNA gene-based barcoding. Resulting 77 Actinobacteria isolates represented the genera Actinokineospora, Kitasatospora, Asanoa, Microbacterium, Micromonospora, Micrococcus, Mycobacterium, Nocardia, and Streptomyces. In parallel, Edelweiss plants from the same location were surface-sterilized, separated into leaves, roots, rhizomes, and inflorescence and pooled within tissues before genomic DNA extraction. Metagenomic 16S rRNA gene amplicons confirmed large numbers of actinobacterial operational taxonomic units (OTUs) descending in diversity from roots to rhizomes, leaves and inflorescences. These metagenomic data, when queried with isolate sequences, revealed an overlap between the two datasets, suggesting recruitment of soil bacteria by the plant. Moreover, this study uncovered a profound diversity of uncultured Actinobacteria from Rubrobacteridae, Thermoleophilales, Acidimicrobiales and unclassified Actinobacteria specifically in belowground tissues, which may be exploited by a targeted isolation approach in the future.

9.
Antimicrob Agents Chemother ; 57(8): 3815-22, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23716057

RESUMEN

A comprehensive comparative analysis of the structure-antifungal activity relationships for the series of biosynthetically engineered nystatin analogues and their novel semisynthetic derivatives, as well as amphotericin B (AMB) and its semisynthetic derivatives, was performed. The data obtained revealed the significant influence of the structure of the C-7 to C-10 polyol region on the antifungal activity of these polyene antibiotics. Comparison of positions of hydroxyl groups in the antibiotics and in vitro antifungal activity data showed that the most active are the compounds in which hydroxyl groups are in positions C-8 and C-9 or positions C-7 and C-10. Antibiotics with OH groups at both C-7 and C-9 had the lowest activity. The replacement of the C-16 carboxyl with methyl group did not significantly affect the in vitro antifungal activity of antibiotics without modifications at the amino group of mycosamine. In contrast, the activity of the N-modified derivatives was modulated both by the presence of CH3 or COOH group in the position C-16 and by the structure of the modifying substituent. The most active compounds were tested in vivo to determine the maximum tolerated doses and antifungal activity on the model of candidosis sepsis in leukopenic mice (cyclophosphamide-induced). Study of our library of semisynthetic polyene antibiotics led to the discovery of compounds, namely, N-(L-lysyl)-BSG005 (compound 3n) and, especially, L-glutamate of 2-(N,N-dimethylamino)ethyl amide of S44HP (compound 2j), with high antifungal activity that were comparable in in vitro and in vivo tests to AMB and that have better toxicological properties.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Polienos/farmacología , Animales , Antifúngicos/síntesis química , Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Ciclofosfamida/efectos adversos , Evaluación Preclínica de Medicamentos , Leucopenia/inducido químicamente , Leucopenia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Nistatina/análogos & derivados , Nistatina/farmacología , Polienos/síntesis química , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Bibliotecas de Moléculas Pequeñas/análisis , Relación Estructura-Actividad
10.
Curr Opin Biotechnol ; 23(6): 941-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22560158

RESUMEN

Bioprospecting of natural sources for new medicines has a long and successful history, exemplified by the fact that over 50% of all drugs currently on the market are either derived from or inspired by natural products. However, development of new natural product-based therapeutics has been on the decline over the past 20 years, mainly owing to frequent re-discovery of already known compounds coupled with high costs for screening, characterization and development. With the onset of the genomic era allowing rapid sequencing and analysis of bacterial and fungal genomes, it became evident that these organisms possess 'hidden treasures' in the form of gene clusters potentially governing biosynthesis of novel biologically active compounds. This review highlights current progress in mining for and expression of these gene clusters, which may revolutionize the drug discovery pipelines in the near future.


Asunto(s)
Descubrimiento de Drogas/métodos , Genoma Bacteriano/genética , Genoma Fúngico/genética , Productos Biológicos/aislamiento & purificación , Productos Biológicos/metabolismo , Genómica , Redes y Vías Metabólicas/genética , Familia de Multigenes/genética , Biología Sintética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA