Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3177-3183, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38511355

RESUMEN

It is of great significance to investigate the volume and water holding characteristics of litters for the accurate evaluation of forest water conservation function. With Pinus tabuliformis, Robinia pseudoacacia, Populus davidiana, Quercus wutaishanica and Platycladus orientalis as the research objects in the Loess Plateau of Western Shanxi Province, we analyzed the thickness of undecomposed layer and semi-decomposed layer, the volume of litter, and the relationship between the litter water-holding characteristics and the immersion time for different stands by the combination of sample survey and indoor immersion test. The results showed that the total thickness of litter layer was 4.06-5.12 cm, with the thickest layer in R. pseudoacacia forest and the thinnest in P. tabuliformis forest. The storage volume of litter was the largest in Q. wutaishanica (24.39 t·hm-2), followed by P. davidiana (23.64 t·hm-2), P. orientalis (22.51 t·hm-2), and R. pseudoacacia (22.48 t·hm-2), and the smallest in P. tabuliformis (20.42 t·hm-2). The volume in the undecomposed layer was less than that in the semi-decomposed layer. The maximum water holding of litter was 40.41-79.56 t·hm-2, with the highest of Q. wutaishanica and the lowest of P. tabuliformis. The effective interception rate of litter was 108%-188%. The changes of water capacity and water absorption rate of litter were most rapid in Q. wutaishanica, P. davidiana and R. pseudoacacia, and the changes were faster in the semi-decomposed layer than in the undecomposed layer. The water-holding capacity of litter in five forests was following an order of Q. wutaishanica>P. davidiana>R. pseudoacacia>P. orientalis>P. tabuliformis.


Asunto(s)
Robinia , Suelo , Bosques , China , Agua/análisis , Ecosistema
2.
Plant Physiol Biochem ; 154: 699-713, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32750647

RESUMEN

Allantoin as a nitrogen metabolite can improve the salt tolerance in plants, but its mechanism of action remain elusive. Herein, the effects of pretreatment with exogenous allantoin in salt tolerance were investigated in sugar beet. The seedlings were subjected to salt stress (300 mM Na+) without or with different allantoin concentrations (0.01, 0.1, and 1 mM). The effects of allantoin on plant growth, homeostasis, oxidative damage, osmoregulation, and polyamine metabolism were studied. The results showed that salt stress inhibited the net photosynthetic rate and plant growth, and caused oxidative damage. However, these adverse effects were mitigated by exogenous allantoin in a dose-dependent manner, especially at 0.1 mM. Allantoin reduced the accumulation of ROS by increasing the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and AsA content. Under salt stress, allantoin reduced the root concentrations of free putrescine (Put) but increased the free spermine (Spm) in leaves and roots. Furthermore, allantoin decreased the Na+/K+ ratio and promoted the accumulation of betaine and soluble sugars in leaves and roots. Under salinity conditions, allantoin may enhance the antioxidant system and improve ion homeostasis by enhancing putrescine and/or spermine accumulation. In addition, Pearson's correlation and principal component analysis (PCA) established correlations between physiological parameters, and significant differences between different concentrations of allantoin were observed. In total, exogenous allantoin effectively reduced the oxidative damage and ion toxicity in sugar beet, caused by salinity, this finding would be helpful in improving salt tolerance in plant.


Asunto(s)
Alantoína/farmacología , Antioxidantes/metabolismo , Beta vulgaris/fisiología , Putrescina/metabolismo , Tolerancia a la Sal , Beta vulgaris/efectos de los fármacos , Plantones , Azúcares
3.
BMC Plant Biol ; 20(1): 227, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32434543

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) play crucial roles in regulating numerous biological processes in which complicated mechanisms are involved. Nonetheless, little is known about the number, features, sequences, and possible effects of lncRNAs on plant responses to alkaline stress. RESULTS: Leaf samples collected based on the control Beta vulgaris L., as well as those under short-term and long-term alkaline treatments, were subjected to high-throughput RNA sequencing, through which a total of 8535 lncRNAs with reliable expression were detected. Of these lncRNAs, 102 and 49 lncRNA expression profiles were altered after short- and long-term alkaline stress, respectively. Moreover, 7 lncRNAs were recognized as precursors to 17 previously identified miRNAs. Four lncRNAs responsive to alkaline stress were estimated as targets for 8 miRNAs. Moreover, computational analysis predicted 4318 potential target genes as lncRNAs responsive to alkaline stress. Analysis of functional annotations showed that the abovementioned possible target genes were involved in various bioprocesses, such as kinase activity, structural constituents of ribosomes, the ribonucleoprotein complex and protein metabolic processes. Association analysis provided convincing proof of the interplay of specific candidate target genes with lncRNAs. CONCLUSION: LncRNAs likely exert vital roles during the regulation of the alkaline stress response and adaptation in plants through interaction with protein-coding genes. The findings of this study contribute to comprehensively examining lncRNAs in Beta vulgaris L. and shed more light on the possible roles and modulating interplays of lncRNAs responsive to alkaline stress, thereby laying a certain basis for functional analyses of these types of Beta vulgaris L. lncRNAs in the future.


Asunto(s)
Beta vulgaris/fisiología , ARN Largo no Codificante/genética , ARN de Planta/genética , Estrés Fisiológico/genética , Beta vulgaris/genética , Concentración de Iones de Hidrógeno , ARN Largo no Codificante/metabolismo , ARN de Planta/metabolismo
4.
BMC Plant Biol ; 20(1): 138, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245415

RESUMEN

BACKGROUND: Beta vulgaris L. is one of the main sugar-producing crop species and is highly adaptable to saline soil. This study explored the alterations to the carbon and nitrogen metabolism mechanisms enabling the roots of sugar beet seedlings to adapt to salinity. RESULTS: The ionome, metabolome, and transcriptome of the roots of sugar beet seedlings were evaluated after 1 day (short term) and 7 days (long term) of 300 mM Na+ treatment. Salt stress caused reactive oxygen species (ROS) damage and ion toxicity in the roots. Interestingly, under salt stress, the increase in the Na+/K+ ratio compared to the control ratio on day 7 was lower than that on day 1 in the roots. The transcriptomic results showed that a large number of differentially expressed genes (DEGs) were enriched in various metabolic pathways. A total of 1279 and 903 DEGs were identified on days 1 and 7, respectively, and were mapped mainly to 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of the genes were involved in carbon metabolism and amino acid (AA) biosynthesis. Furthermore, metabolomic analysis revealed that sucrose metabolism and the activity of the tricarboxylic acid (TCA) cycle increased in response to salt stress. After 1 day of stress, the content of sucrose decreased, whereas the content of organic acids (OAs) such as L-malic acid and 2-oxoglutaric acid increased. After 7 days of salt stress, nitrogen-containing metabolites such as AAs, betaine, melatonin, and (S)-2-aminobutyric acid increased significantly. In addition, multiomic analysis revealed that the expression of the gene encoding xanthine dehydrogenase (XDH) was upregulated and that the expression of the gene encoding allantoinase (ALN) was significantly downregulated, resulting in a large accumulation of allantoin. Correlation analysis revealed that most genes were significantly related to only allantoin and xanthosine. CONCLUSIONS: Our study demonstrated that carbon and nitrogen metabolism was altered in the roots of sugar beet plants under salt stress. Nitrogen metabolism plays a major role in the late stages of salt stress. Allantoin, which is involved in the purine metabolic pathway, may be a key regulator of sugar beet salt tolerance.


Asunto(s)
Alantoína/metabolismo , Beta vulgaris , Carbono/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Adaptación Fisiológica , Amidohidrolasas/genética , Beta vulgaris/genética , Beta vulgaris/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Metaboloma/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Purinas/metabolismo , Salinidad , Tolerancia a la Sal , Estrés Fisiológico/genética , Transcriptoma/genética , Xantina Deshidrogenasa/genética
5.
Plant Mol Biol ; 102(6): 645-657, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32040759

RESUMEN

KEY MESSAGE: RNA-seq was used to analyze the transcriptional changes in sugar beet (Beta vulgaris L.) triggered by alkaline solution to elucidate the molecular mechanism underlying alkaline tolerance in sugar beet. Several differentially expressed genes related to stress tolerance were identified. Our results provide a valuable resource for the breeding of new germplasms with high alkaline tolerance. Alkalinity is a highly stressful environmental factor that limits plant growth and production. Sugar beet own the ability to acclimate to various abiotic stresses, especially salt and alkaline stress. Although substantial previous studies on response of sugar beet to saline stress has been conducted, the expressions of alkali-responsive genes in sugar beet have not been comprehensively investigated. In this study, we conducted transcriptome analysis of leaves in sugar beet seedlings treated with alkaline solutions for 0 day (control, C), 3 days (short-term alkaline treatment, ST) and 7 days (long-term alkaline treatment, LT). The clean reads were obtained and assembled into 25,507 unigenes. Among them, 975 and 383 differentially expressed genes (DEGs) were identified in the comparison groups ST_vs_C and LT_vs_C, respectively. Gene ontology (GO) analysis revealed that oxidation-reduction process and lipid metabolic process were the most enriched GO term among the DEGs in ST_vs_C and LT_vs_C, respectively. According to Kyoto Encyclopedia of Genes and Genomes pathway, carbon fixation in photosynthetic organisms pathway were significantly enriched under alkaline stress. Besides, expression level of genes encoding D-3-phosphoglycerate dehydrogenase 1, glutamyl-tRNA reductase 1, fatty acid hydroperoxide lyase, ethylene-insensitive protein 2, metal tolerance protein 11 and magnesium-chelatase subunit ChlI, etc., were significantly altered under alkaline stress. Additionally, among the DEGs, 136 were non-annotated genes and 24 occurred with differential alternative splicing. Our results provide a valuable resource on alkali-responsive genes and should benefit the improvement of alkaline stress tolerance in sugar beet.


Asunto(s)
Beta vulgaris/genética , Beta vulgaris/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Transcriptoma/genética , Aclimatación , Álcalis , Beta vulgaris/enzimología , Carbono/metabolismo , Ontología de Genes , Genes de Plantas/genética , Hojas de la Planta/genética , Plantones/genética , Análisis de Secuencia de ARN , Cloruro de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA