Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chin J Integr Med ; 30(10): 917-926, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38532152

RESUMEN

OBJECTIVE: To explore the protective effect and the underlying mechanism of silibinin (SIB), one of the active compounds from Silybum marianum (L.) Gaertn in endotoxemia. METHODS: Mouse peritoneal macrophage were isolated via intraperitoneally injection of BALB/c mice with thioglycolate medium. Cell viability was assessed using the cell counting kit-8, while cytotoxicity was determined through lactate dehydrogenase cytotoxicity assay. The protein expressions of interleukin (IL)-1 α, IL-1 ß, and IL-18 were determined by enzyme-linked immunosorbent assay. Intracellular lipopolysaccharide (LPS) levels were measured by employing both the limulus amoebocyte lysate assay and flow cytometry. Additionally, proximity ligation assay was employed for the LPS and caspase-11 interaction. Mice were divided into 4 groups: the control, LPS, high-dose-SIB (100 mg/kg), and low-dose-SIB (100 mg/kg) groups (n=8). Zebrafish were divided into 4 groups: the control, LPS, high-dose-SIB (200 εmol/L), and low-dose-SIB (100 εmol/L) groups (n=30 for survival experiment and n=10 for gene expression analysis). The expression of caspase-11, gasdermin D (GSDMD), and N-GSDMD was determined by Western blot and the expressions of caspy2, gsdmeb, and IL-1 ß were detected using quantitative real-time PCR. Histopathological observation was performed through hematoxylineosin staining, and protein levels in bronchoalveolar lavage fluid were quantified using the bicinchoninicacid protein assay. RESULTS: SIB noticeably decreased caspase-11 and GSDMD-mediated pyroptosis and suppressed the secretion of IL-1 α, IL-1 ß, and IL-18 induced by LPS (P<0.05). Moreover, SIB inhibited the translocation of LPS into the cytoplasm and the binding of caspase-11 and intracellular LPS (P<0.05). SIB also attenuated the expression of caspase-11 and N-terminal fragments of GSDMD, inhibited the relative cytokines, prolonged the survival time, and up-regulated the survival rate in the endotoxemia models (P<0.05). CONCLUSIONS: SIB can inhibit pyroptosis in the LPS-mediated endotoxemia model, at least in part, by inhibiting the caspase-11-mediated cleavage of GSDMD. Additionally, SIB inhibits the interaction of LPS and caspase-11 and inhibits the LPS-mediated up-regulation of caspase-11 expression, which relieves caspase-11-dependent cell pyroptosis and consequently attenuates LPS-mediated lethality.


Asunto(s)
Endotoxemia , Lipopolisacáridos , Ratones Endogámicos BALB C , Piroptosis , Silibina , Piroptosis/efectos de los fármacos , Endotoxemia/tratamiento farmacológico , Endotoxemia/inducido químicamente , Animales , Silibina/farmacología , Caspasas Iniciadoras/metabolismo , Pez Cebra , Ratones , Masculino , Sustancias Protectoras/farmacología , Supervivencia Celular/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo
2.
Int J Biol Macromol ; 256(Pt 1): 128265, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984577

RESUMEN

Consuming a high­sodium diet carries serious health risks and significantly influences the activation state of the renin-angiotensin system (RAS). This study evaluates the protective effect of angiotensin-converting enzyme (ACE) inhibitory peptide IVGFPAYGH on a high­sodium diet-induced liver injury. IVGFPAYGH supplementation increased the activities of liver antioxidase and decreased the levels of liver inflammatory factor in mice fed a high­sodium diet (8 % NaCl). IVGFPAYGH supplementation also reduced liver fatty acid synthesis and promoted fatty acid oxidation, increased the expression of low-density lipoprotein receptor, and improved liver dyslipidemia. Furthermore, IVGFPAYGH supplementation inhibited the activation of the liver RAS via inhibiting ACE activity and reducing angiotensin II levels in mice fed a high­sodium diet. Moreover, IVGFPAYGH supplementation could alter the gut microbiota composition toward a normal gut microbiota composition and increase the abundance of the Lactobacillus genus. IVGFPAYGH supplementation also increased the expression levels of small intestinal tight junction protein and cecum short-chain fatty acids. Thus, IVGFPAYGH supplementation may maintain intestinal homeostasis and improve high­sodium diet-induced liver injury by altering the gut microbiota composition and inhibiting the RAS. IVGFPAYGH is a promising functional ingredient for protecting liver damage caused by a high­sodium diet.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Microbioma Gastrointestinal , Ratones , Animales , Sistema Renina-Angiotensina/fisiología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Hígado/metabolismo , Angiotensina II/metabolismo , Ácidos Grasos/metabolismo , Sodio/metabolismo , Dieta , Dieta Alta en Grasa , Ratones Endogámicos C57BL
3.
Chin J Integr Med ; 29(12): 1111-1120, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37610554

RESUMEN

OBJECTIVE: To explore the anti-inflammatory effects of ethyl lithospermate in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine-derived macrophages and zebrafish, and its underlying mechanisms. METHODS: 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to investigate the toxicity of ethyl lithospermate at different concentrations (12.5-100 µ mol/L) in RAW 264.7 cells. The cells were stimulated with LPS (100 ng/mL) for 12 h to establish an inflammation model in vitro, the production of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α (TNF-α) were assessed by enzyme linked immunosorbent assay (ELISA). Western blot was used to ascertain the protein expressions of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) p65, phospho-STAT3 (p-STAT3, Tyr705), inhibitor of NF-κB (IκB) α, and phospho-I κB α (p-IκB α, Ser32), and confocal imaging was used to identify the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Additionally, the yolk sacs of zebrafish (3 days post fertilization) were injected with 2 nL LPS (0.5 mg/mL) to induce an inflammation model in vivo. Survival analysis, hematoxylin-eosin (HE) staining, observation of neutrophil migration, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to further study the anti-inflammatory effects of ethyl lithospermate and its probable mechanisms in vivo. RESULTS: The non-toxic concentrations of ethyl lithospermate have been found to range from 12.5 to 100 µ mol/L. Ethyl lithospermate inhibited the release of IL-6 and TNF-α(P<0.05 or P<0.01), decreased IκBα degradation and phosphorylation (P<0.05) as well as the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705) in LPS-induced RAW 264.7 cells (P<0.01). Ethyl lithospermate also decreased inflammatory cells infiltration and neutrophil migration while increasing the survival rate of LPS-stimulated zebrafish (P<0.05 or P<0.01). In addition, ethyl lithospermate also inhibited the mRNA expression levels of of IL-6, TNF-α, IκBα, STAT3, and NF-κB in LPS-stimulated zebrafish (P<0.01). CONCLUSION: Ethyl lithospermate exerts anti-Inflammatory effected by inhibiting the NF-κB and STAT3 signal pathways in RAW 264.7 macrophages and zebrafish.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Células RAW 264.7 , Pez Cebra , Inhibidor NF-kappaB alfa/metabolismo , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Transcripción STAT3/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
4.
Phytomedicine ; 119: 154977, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37506573

RESUMEN

BACKGROUND: Dengue virus (DENV) is a major public health threat. However, there are no specific therapeutic drugs for DENV. Many Chinese heat-cleaning formulas, such as Liang-Ge-San (LGS), have been frequently used in the virus-induced diseases. The antiviral effect of LGS has not been reported yet. PURPOSE: In this study, the effect of LGS on the inhibition of dengue virus serotype 2 (DENV-2) was investigated and the relevant mechanism was explored. METHODS: High-performance liquid chromatography was applied to analyze the chemical characterization of LGS. The in vitro antiviral activities of LGS against DENV-2 were evaluated by time-of-drug-addition assay. The binding of heat shock protein 70 (Hsp70) and envelope (E) protein or caveolin1 (Cav1) were analyzed by immunofluorescence and immunoprecipitation assays. Then the role of Cav1 in the anti-DENV-2 effects of LGS was further examined. DENV-2 infected Institute of Cancer Research suckling mice (n = 10) and AG129 mice (n = 8) were used to examine the protective effects of LGS. RESULTS: It was found that geniposide, liquiritin, forsythenside A, forsythin, baicalin, baicalein, rhein, and emodin maybe the characteristic components of LGS. LGS inhibited the early stage of DENV-2 infection, decreased the expression levels of viral E and non-structural protein 1 (NS1) proteins. LGS also reduced E protein and Hsp70 binding and attenuated the translocation of Hsp70 from cytoplasm to the cell membrane. Moreover, LGS decreased the binding of Hsp70 to Cav1. Further study showed that the overexpression of Cav1 reversed LGS-mediated E protein and Hsp70 inhibition in the plasma membrane. In the in vivo study, LGS was highly effective in prolonging the survival time, reducing viral loads. CONCLUSION: This work demonstrates for the first time that LGS exerts anti-DENV-2 activity in vitro and in vivo. LGS decreases DENV-2-stimulated cytoplasmic Hsp70 translocation into the plasma membrane by Cav1 inhibition, thereby inhibiting the early stage of virus infection. These findings indicate that LGS may be a candidate for the treatment of DENV.


Asunto(s)
Virus del Dengue , Dengue , Animales , Ratones , Dengue/tratamiento farmacológico , Proteínas HSP70 de Choque Térmico , Serogrupo , Membrana Celular , Antivirales/farmacología , Antivirales/uso terapéutico , Citoplasma/metabolismo
5.
J Ethnopharmacol ; 317: 116743, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37331452

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cardiovascular disease (CVD) is a serious disease with a high incidence rate and mortality. Inflammation is closely related to the occurrence of CVDs. As an essential medicine of promoting blood circulation and removing blood stasis in China, Salvia miltiorrhiza Bunge (Danshen) is widely used to treat CVDs due to its anti-inflammatory and cardiovascular protective effects. Salvianolic acids are the most abundant component in the water extract of S. miltiorrhiza, which has a significant effect on the treatment of CVDs. However, due to the complex composition of salvianolic acids, the active molecules and their underlying mechanisms have not been fully explored. AIM OF THIS STUDY: The present study aims to isolate and identify salvianolic acids from Danshen with anti-inflammatory activity and explore the potential mechanisms of isolates. METHODS: The structures of isolated salvianolic acids were elucidated by UV, IR, NMR, MS and electronic circular dichroism (ECD) calculations. Then anti-inflammatory activities of isolates were screened out by the zebrafish inflammation models. The most active compound was further used to explore the anti-inflammatory mechanisms on LPS-stimulated RAW 264.7 cells. The key inflammatory cytokines IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay (ELISA). The protein expression levels of STAT3, p-STAT3 (Tyr705), NF-κB p65, IκBα, p-IκBα (Ser32) and α7nAchR were determined by Western blotting. The nuclear translocation of p-STAT3 (Tyr705) and NF-κB p65 was evaluated by immunofluorescence assays. Finally, the in vivo anti-inflammatory mechanisms were investigated by observation of neutrophil migration, H&E staining, survival analysis and quantitative PCR (Q-PCR) in LPS-microinjected zebrafish. RESULTS: Two new and four known compounds were isolated from Danshen. Among them, isosalvianolic acid A-1 (C1) and ethyl lithospermate (C5) inhibited neutrophil migrations in three zebrafish inflammation models and C1 with the best activities decreased the secretion of IL-6 and TNF-α and inhibited the expression level of p-IκBα (Ser32) in LPS stimulated RAW 264.7 cells. In addition, C1 also reduced the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Moreover, C1 significantly upregulated the protein expression of α7nAchR, and the knockdown of α7nAchR counteracted the effects of C1 on the production of IL-6 and TNF-α and the expression levels of p-STAT3 (Tyr705), NF-κB p65 and p-IκBα (Ser32). In vivo experiments, C1 decreased the migration and infiltration of inflammatory cells, increased the survival ratio and inhibited the mRNA level of IL-6, TNF-α, STAT3, NF-κB and IκBα in LPS-microinjected zebrafish. CONCLUSION: Two new and four known compounds were isolated from Danshen. Among them, C1 exerted anti-inflammatory activities by activating α7nAchR signaling and subsequently inhibiting STAT3 and NF-κB pathways. This study provided evidence for the clinical application of Danshen and contributed to the development of C1 as a novel in the treatment of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Salvia miltiorrhiza , Animales , Ratones , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Pez Cebra , Receptor Nicotínico de Acetilcolina alfa 7 , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Células RAW 264.7
6.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-37259408

RESUMEN

BACKGROUND: At present, about half of the world's population is at risk of being infected with dengue virus (DENV). However, there are no specific drugs to prevent or treat DENV infection. Glycyrrhizae Radix et Rhizome, a well-known traditional Chinese medicine, performs multiple pharmacological activities, including exerting antiviral effects. The aim of this study was to investigate the anti-DENV effects of n-butanol extract from Glycyrrhizae Radix et Rhizome (GRE). METHODS: Compounds analysis of GRE was conducted via ultra-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). The antiviral activities of GRE were determined by the CCK-8 assay, plaque assay, qRT-PCR, Western blotting, and the immunofluorescence assay. The DENV-infected suckling mice model was constructed to explore the antiviral effects of GRE in vivo. RESULTS: Four components in GRE were analyzed by UHPLC-MS/MS, including glycyrrhizic acid, glycyrrhetnic acid, liquiritigenin, and isoliquiritigenin. GRE inhibited the attachment process of the virus replication cycle and reduced the expression of the E protein in cell models. In the in vivo study, GRE significantly relieved clinical symptoms and prolong survival duration. GRE also significantly decreased viremia, reduced the viral load in multiple organs, and inhibited the release of pro-inflammatory cytokines in DENV-infected suckling mice. CONCLUSIONS: GRE exhibited significant inhibitory activities in the adsorption stage of the DENV-2 replication cycle by targeting the envelope protein. Thus, GRE might be a promising candidate for the treatment of DENV infection.

7.
J Ethnopharmacol ; 316: 116358, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36933872

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei Yanghe Decoction (JWYHD) is a widely used traditional Chinese medicine prescription in the clinical setting for the treatment of autoimmune diseases. Many studies showed that JWYHD has anti-tumor activities in cell and animal models. However, the anti-breast cancer effects of JWYHD and the underlying mechanisms of action remain unknown. AIM OF STUDY: This study aimed to determine the anti-breast cancer effect and reveal the underlying mechanisms of action in vivo, in vitro and in silico. MATERIALS AND METHODS: Orthotopic xenograft breast cancer mouse model and inflammatory zebrafish model were used to observe the anti-tumor effect and immune cell regulation of JWYHD. Moreover, the anti-inflammatory effect of JWYHD were evaluated by the expression of RAW 264.7 cells. JWYHD active ingredients were obtained by UPLC-MS/MS and potential targets were screened by network pharmacology. The therapeutic targets and signaling pathways predicted by computer were assessed by Western blot, real-time PCR (RT-PCR), immunohistochemistry (IHC) staining, and Enzyme-linked immunosorbent assays (ELISA) to explore the therapeutic mechanism of JWYHD against breast cancer. At last, Colivelin and Stattic were used to explore the effect of JWYHD on JAK2/STAT3 pathway. RESULTS: JWYHD significantly decreased the tumor growth in a dose-dependent manner in the orthotopic xenograft breast cancer mouse model. Flow cytometry and IHC results indicated that JWYHD decreased the expressions of M2 macrophages and Treg while increasing M1 macrophages. Meanwhile, ELISA and Western blot results showed a decrease in IL-1ß, IL-6, TNFα, PTGS2 and VEGFα in tumor tissue of JWYHD groups. The results were also verified in LPS-induced RAW264.7 cells and zebrafish inflammatory models. TUNEL assay and IHC results showed that JWYHD significantly induced apoptosis. Seventy-two major compounds in JWYHD were identified by UPLC-MS/MS and Network pharmacology. It was found that the significant binding affinity of JWYHD to TNFα, PTGS2, EGFR, STAT3, VEGFα and their expressions were inhibited by JWYHD. IHC and Western blot analysis showed that JWYHD could decrease the expression of JAK2/STAT3 pathway. Furthermore, Colivelin could reverse the decrease effect of JWYHD in vitro. CONCLUSION: JWYHD exerts a significant anti-tumor effect mainly by inhibiting inflammation, activating immune responses and inducing apoptosis via the JAK2/STAT3 signaling pathway. Our findings provide strong pharmacological evidence for the clinical application of JWYHD in the management of breast cancer.


Asunto(s)
Neoplasias , Factor de Necrosis Tumoral alfa , Humanos , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Pez Cebra , Cromatografía Liquida , Ciclooxigenasa 2/metabolismo , Espectrometría de Masas en Tándem , Transducción de Señal , Inmunidad , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-36062172

RESUMEN

Background: Hepatocellular carcinoma (HCC) is characterized by poor diagnosis and high mortality. Novel and efficient therapeutic agents are urgently needed for the treatment. Hedyotis diffusa Willd (HDW) is used to treat cancers, especially HCC in China. Purpose: The study aimed to identify the main anti-HCC extract in HDW and to explore the mechanism of the active extract. Materials and Methods: The high-performance liquid chromatography-quadrupole-time of flight mass spectrometry (HPLC-QTOF-MS) method was used for the simultaneous determination of main compounds in the ethyl acetate fraction of HDW (EHDW). The toxicity test of different HDW fractions was carried out on larvae at 2 day-post-fertilization (dpf) for 72 h. The in vivo anti-HCC effect of different HDW fractions was evaluated on a zebrafish tumor model by immersion administration. The antiproliferative effect of HDW fractions was determined with MTT assay, as well as hematoxylin and eosin (HE) staining assay. Hoechst 33258 staining was used to observe changes in nucleus morphology. Flow cytometry analysis was used to investigate apoptosis induction. Western blot analysis was used to examine apoptosis-related proteins, and key proteins in JNK/Nur77 signaling pathway. SP600125 was served to validate the apoptotic mechanism. Results: EHDW showed the strongest tumor cell growth inhibitory effect on zebrafish tumor model. Further study revealed that EHDW induced apoptosis in zebrafish tumor model and in cultured Hep3B cells. Meanwhile, it has been shown that the levels of BCL2-associated X (Bax), cytochrome c (cyto c), cleaved-caspase 3, and poly-ADP-ribose polymerase (PARP) cells were upregulated. In contrast, the level of antiapoptotic B cell lymphoma-2 (Bcl-2) was downregulated in Hep3B cells. Additionally, EHDW activated JNK/Nur77 pathway by increasing the levels of p-JNK(Thr183/Tyr185) and p-Nur77(Ser351). Further study showed that blockage of JNK by SP600125 reversed EHDW-induced JNK/Nur77 pathway and the downstream apoptotic proteins. Conclusion: In conclusion, EHDW exerted the anti-HCC effect, which may be attributed to the activation of JNK/Nur77 pathway. This study supported the rationale of HDW as an HCC therapeutic agent.

9.
Front Nutr ; 9: 960926, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990359

RESUMEN

To improve the utilization value of chicken by-products, we utilized the method of step-by-step hydrolysis with bromelain and flavourzyme to prepare low molecular weight chicken skin collagen peptides (CCP) (<5 kDa) and characterized the amino acids composition of the CCP. Then, we prepared novel CCP-chelated zinc (CCP-Zn) by chelating the CCP with ZnSO4. We found that the bioavailability of CCP-Zn is higher than ZnSO4. Besides, CCP, ZnSO4, or CCP-Zn effectively repressed the tumor growth, invasion, and migration in a Drosophila malignant tumor model. Moreover, the anti-tumor activity of CCP-Zn is higher than CCP or ZnSO4. Furthermore, the functional mechanism studies indicated that CCP, ZnSO4, or CCP-Zn inhibits tumor progression by reducing the autonomous and non-autonomous autophagy in tumor cells and the microenvironment. Therefore, this research provides in vivo evidence for utilizing chicken skin in the development of zinc supplements and cancer treatment in the future.

10.
Brain Res Bull ; 151: 125-131, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30599217

RESUMEN

Neuropathic pain is generally resistant to currently available treatments, and it is often a consequence of nerve injury due to surgery, diabetes or infection. Myocardial ischemic nociceptive signaling increases the sympathoexcitatory reflex to aggravate myocardial injury. Elucidation of the pathogenetic factors might provide a target for optimal treatment. Abundant evidence in the literature suggests that P2X and P2Y receptors play important roles in signal transmission. Traditional Chinese medicines, such as emodin, puerarin and resveratrol, antagonize nociceptive transmission mediated by purinergic 2 (P2) receptors in primary afferent neurons. This review summarizes recently published data on P2 receptor-mediated neuropathic pain and myocardial ischemia in dorsal root ganglia (DRG), superior cervical ganglia (SCG) and stellate ganglia (SG), with a special focus on the beneficial role of natural compounds.


Asunto(s)
Neuralgia/terapia , Receptores Purinérgicos P2/metabolismo , Animales , Modelos Animales de Enfermedad , Ganglios Espinales/patología , Humanos , Medicina Tradicional China/métodos , Isquemia Miocárdica/tratamiento farmacológico , Neuralgia/metabolismo , Neuronas/fisiología , Receptores Purinérgicos P2/efectos de los fármacos , Receptores Purinérgicos P2X/efectos de los fármacos , Receptores Purinérgicos P2Y/efectos de los fármacos , Reflejo/fisiología , Transducción de Señal/fisiología , Ganglio Cervical Superior/patología
11.
Oxid Med Cell Longev ; 2018: 5082817, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30210654

RESUMEN

Insulin resistance and type 2 diabetes mellitus (T2DM) are highly prevalent around the world. Elevated concentrations of free fatty acids (FFAs) are closely related to insulin resistance and T2DM. P2X7 receptor is an ion channel gated by ATP, which is implicated in various scenarios including immune response, pain, and inflammation. In this study, we have explored whether P2X7 receptor is involved in pathological changes in human umbilical vein endothelial cells (HUVECs) induced by high FFA treatment, and the potential beneficial effects of evodiamine. Evodiamine could effectively suppress the enhanced expression of P2X7 receptor caused by high FFAs at both mRNA and protein levels. In addition, high FFA-induced cytotoxicity, the upregulated release of ATP, and production of reactive oxygen species (ROS) could be ameliorated by evodiamine in HUVECs. Evodiamine could also reverse the decreased NO formation and the increased adhesive events of immune cells at high FFAs. Moreover, evodiamine inhibited P2X7-dependent TNF-α expression and ERK 1/2 phosphorylation due to high FFAs. All these results indicated that evodiamine could correct the upregulated expression of P2X7 receptor induced under high FFA condition in HUVECs, and consequently suppressed oxidative stress and inflammatory responses.


Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Quinazolinas/uso terapéutico , Receptores Purinérgicos P2X7/metabolismo , Células Endoteliales , Humanos , Extractos Vegetales/farmacología , Quinazolinas/farmacología , Receptores Purinérgicos P2X7/análisis
12.
Brain Res Bull ; 135: 53-61, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28962965

RESUMEN

HIV-1 envelope glycoprotein (Glycoprotein 120, gp120) can directly stimulate primary sensory afferent neurons and cause chronic neuropathic pain. The P2X3 receptor in the dorsal root ganglia (DRG) is associated with the transmission of neuropathic pain. Curcumin isolated from the herb Curcuma rhizome has anti-inflammatory and anti-tumor effects. The water solubility, targeting and bioavailability of curcumin can be improved by nanoparticle encapsulation. In this study, we sought to explore the effects of nanoparticle-encapsulated curcumin (nano curcumin) on HIV-gp120-induced neuropathic pain mediated by the P2X3 receptor in DRG neurons. The results showed that mechanical and thermal hyperalgesia in rats treated with gp120 were increased compared to those in the control group. The expression levels of P2X3 mRNA and protein in rats treated with gp120 were higher than those in the control group. Nano curcumin treatment decreased mechanical hyperalgesia and thermal hyperalgesia and upregulated the expression levels of P2X3 mRNA and protein in rats treated with gp120. Nano curcumin treatment also reduced the ERK1/2 phosphorylation levels in gp120-treated rat DRG. In addition, P2X3 agonist α,ß-methylene ATP (α,ß-meATP)-induced currents in DRG neurons cultured with gp120 significantly decreased after co-treatment with nano curcumin. Therefore, nano curcumin treatment may inhibit P2X3 activation, decrease the sensitizing DRG primary afferents and relieve mechanical hyperalgesia and thermal hyperalgesia in gp120-treated rats.


Asunto(s)
Curcumina/uso terapéutico , Neuralgia/tratamiento farmacológico , Receptores Purinérgicos P2X3/efectos de los fármacos , Animales , Curcumina/administración & dosificación , Curcumina/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Proteína gp120 de Envoltorio del VIH/efectos de los fármacos , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/complicaciones , Hiperalgesia/metabolismo , Masculino , Nanopartículas/uso terapéutico , Neuralgia/metabolismo , Neuronas/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Fosforilación , Ratas , Ratas Sprague-Dawley
13.
Neurochem Int ; 108: 27-33, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28192150

RESUMEN

Neuropathic pain is a type of chronic pain caused by nervous system damage and dysfunction. The pathogenesis of chronic pain is complicated, and there are no effective therapies for neuropathic pain. Studies show that the P2X4 receptor expressed in the satellite glial cells (SGCs) of dorsal root ganglia (DRG) is related to neuropathic pain. Artemisinin is a monomeric component extracted from traditional Chinese medicine and has a variety of important pharmacological effects and potential applications. This study observed the effect of artemisinin on neuropathic pain and delineated its possible mechanism. The chronic constriction injury (CCI) rat model was used in this study. The results demonstrated that artemisinin relieved pain behaviors in the CCI rats, inhibited the expression of P2X4 receptor in the DRG, and decreased the ATP-activated currents in HEK293 cells transfected with P2X4 plasmid. Dual-labeling immunofluorescence showed that the coexpression of P2X4 receptor and glial fibrillary acidic protein (GFAP) in the DRG of CCI rats was increased compared to control rats. After CCI rats were treated with artemisinin, the coexpression of P2X4 receptor and GFAP in the DRG was significantly decreased compared to the CCI group. This finding suggested that artemisinin could inhibit the nociceptive transmission mediated by P2X4 receptor in the DRG SGCs and thus relieve pain behaviors in the CCI rats.


Asunto(s)
Artemisininas/uso terapéutico , Ganglios Espinales/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Dimensión del Dolor/métodos , Receptores Purinérgicos P2X4/fisiología , Animales , Artemisininas/farmacología , Relación Dosis-Respuesta a Droga , Ganglios Espinales/efectos de los fármacos , Células HEK293 , Humanos , Masculino , Dimensión del Dolor/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
14.
Int Immunopharmacol ; 28(2): 1044-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26344431

RESUMEN

Evodiamine has been reported to exhibit anti-inflammatory and anti-nociceptive effects, but the underlying mechanisms remain to be defined. P2X4 receptor (P2X4R) is a subtype of ATP receptors and plays important roles in pain, inflammatory and immune responses. We aimed to investigate whether evodiamine has beneficial effects on endothelial inflammatory injury mediated by chronic high glucose condition. We found that culturing human umbilical vein endothelial cells (HUVECs) with high glucose significantly increased the expression of P2X4 receptor in HUVECs, cytosolic Ca(2+) concentrations and intracellular reactive oxygen species (ROS) while decreasing nitric oxide (NO); these effects could be reversed by evodiamine. High glucose also significantly increased the expression of the pro-inflammatory activators (NF-κB) and TNFR-ɑ, which was accompanied by the elevation of P2X4R levels. Evodiamine was able to down-regulate the elevated NF-κB, TNFR-ɑ, P2X4R and ROS, and up-regulate the decreased NO. Thus the evodiamine may exert the anti-inflammation activity on high-glucose challenge HUVEC via suppressing the P2X4R signaling pathway, exhibiting beneficial ability to protect HUVECs from glucotoxicity.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Evodia , Inflamación/tratamiento farmacológico , Quinazolinas/farmacología , Receptores Purinérgicos P2X4/metabolismo , Medicamentos Herbarios Chinos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Glucosa/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Venas Umbilicales/patología , Regulación hacia Arriba/efectos de los fármacos
15.
Purinergic Signal ; 11(2): 161-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25527178

RESUMEN

Irritable bowel syndrome (IBS) and inflammatory bowel disease often display visceral hypersensitivity. Visceral nociceptors after inflammatory stimulation generate afferent nerve impulses through dorsal root ganglia (DRG) transmitting to the central nervous system. ATP and its activated-purinergic 2X7 (P2X7) receptor play an important role in the transmission of nociceptive signal. Purinergic signaling is involved in the sensory transmission of visceral pain. Moxibustion is a therapy applying ignited mugwort directly or indirectly at acupuncture points or other specific parts of the body to treat diseases. Heat-sensitive acupoints are the corresponding points extremely sensitive to moxa heat in disease conditions. In this study, we aimed to investigate the relationship between the analgesic effect of moxibustion on a heat-sensitive acupoint "Dachangshu" and the expression levels of P2X7 receptor in rat DRG after chronic inflammatory stimulation of colorectal distension. Heat-sensitive moxibustion at Dachangshu acupoint inhibited the nociceptive signal transmission by decreasing the upregulated expression levels of P2X7 mRNA and protein in DRG induced by visceral pain, and reversed the abnormal expression of glial fibrillary acidic protein (GFAP, a marker of satellite glial cells) in DRG. Consequently, abdominal withdrawal reflex (AWR) score in a visceral pain model was reduced, and the pain threshold was elevated. Therefore, heat-sensitive moxibustion at Dachangshu acupoint can produce a therapeutic effect on IBS via inhibiting the nociceptive transmission mediated by upregulated P2X7 receptor.


Asunto(s)
Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Moxibustión , Receptores Purinérgicos P2X7/metabolismo , Animales , Modelos Animales de Enfermedad , Síndrome del Colon Irritable/metabolismo , Masculino , Moxibustión/métodos , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA