Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35335116

RESUMEN

Pelargonium graveolens, rose-scented geranium, is commonly used in the perfume industry. P. graveolens is enriched with essential oils, phenolics, flavonoids, which account for its tremendous biological activities. Laser light treatment and arbuscular mycorrhizal fungi (AMF) inoculation can further enhance the phytochemical content in a significant manner. In this study, we aimed to explore the synergistic impact of these two factors on P. graveolens. For this, we used four groups of surface-sterilized seeds: (1) control group1 (non-irradiated; non-colonized group); (2) control group2 (mycorrhizal colonized group); (3) helium-neon (He-Ne) laser-irradiated group; (4) mycorrhizal colonization coupled with He-Ne laser-irradiation group. Treated seeds were growing in artificial soil inculcated with Rhizophagus irregularis MUCL 41833, in a climate-controlled chamber. After 6 weeks, P. graveolens plants were checked for their phytochemical content and antibacterial potential. Laser light application improved the mycorrhizal colonization in P. graveolens plants which subsequently increased biomass accumulation, minerals uptake, and biological value of P. graveolens. The increase in the biological value was evident by the increase in the essential oils production. The concomitant application of laser light and mycorrhizal colonization also boosted the antimicrobial activity of P. graveolens. These results suggest that AMF co-treatment with laser light could be used as a promising approach to enhance the metabolic content and yield of P. graveolens for industrial and pharmaceutical use.


Asunto(s)
Antiinfecciosos , Micorrizas , Aceites Volátiles , Pelargonium , Antiinfecciosos/química , Antiinfecciosos/farmacología , Minerales , Micorrizas/metabolismo , Aceites Volátiles/química , Pelargonium/química
2.
Pharm Chem J ; 55(10): 1080-1084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35125554

RESUMEN

The recent outbreak of coronavirus disease 2019 (COVID-19) is a respiratory infection and it can spread from animal to person, person to person through coughing or physical contact. Recent studies revealed that the genome sequence of this pandemic disease is very similar to that of SARS-CoV, thus, there are not yet effective treatments that target the 2019-nCoV virus. Medicinal plants present a potential solution to resolve the drug problem. In fact, the bioactive compounds such as phenols, flavonoids, monoterpenes, and phenylpropanoids, derived from several herbs such as Eucalyptus globulus, Mentha spicata, Nigella sativa, Rosmarinus officinalis, Thymus capitatus and Zingiber officinale could be used to develop formal drugs against several diseases with no or minimal side effects. In this paper, we describe the potential antiviral properties of several medicinal plants against Coronaviridae family viruses such as SARS, MERS, and IBV. Besides, we review various species of medicinal herbs and their derived phytochemical compounds in terms of their immunomodulatory bioactivities and antiviral activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA