Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Toxicol ; 88(3): 701-23, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24374802

RESUMEN

For more than two decades, scientists have been trying to replace the regulatory in vivo Draize eye test by in vitro methods, but so far only partial replacement has been achieved. In order to better understand the reasons for this, historical in vivo rabbit data were analysed in detail and resampled with the purpose of (1) revealing which of the in vivo endpoints are most important in driving United Nations Globally Harmonized System/European Union Regulation on Classification, Labelling and Packaging (UN GHS/EU CLP) classification for serious eye damage/eye irritation and (2) evaluating the method's within-test variability for proposing acceptable and justifiable target values of sensitivity and specificity for alternative methods and their combinations in testing strategies. Among the Cat 1 chemicals evaluated, 36-65 % (depending on the database) were classified based only on persistence of effects, with the remaining being classified mostly based on severe corneal effects. Iritis was found to rarely drive the classification (<4 % of both Cat 1 and Cat 2 chemicals). The two most important endpoints driving Cat 2 classification are conjunctiva redness (75-81 %) and corneal opacity (54-75 %). The resampling analyses demonstrated an overall probability of at least 11 % that chemicals classified as Cat 1 by the Draize eye test could be equally identified as Cat 2 and of about 12 % for Cat 2 chemicals to be equally identified as No Cat. On the other hand, the over-classification error for No Cat and Cat 2 was negligible (<1 %), which strongly suggests a high over-predictive power of the Draize eye test. Moreover, our analyses of the classification drivers suggest a critical revision of the UN GHS/EU CLP decision criteria for the classification of chemicals based on Draize eye test data, in particular Cat 1 based only on persistence of conjunctiva effects or corneal opacity scores of 4. In order to successfully replace the regulatory in vivo Draize eye test, it will be important to recognise these uncertainties and to have in vitro tools to address the most important in vivo endpoints identified in this paper.


Asunto(s)
Ojo/efectos de los fármacos , Irritantes/clasificación , Irritantes/toxicidad , Pruebas de Toxicidad/métodos , Animales , Conjuntiva/efectos de los fármacos , Córnea/efectos de los fármacos , Bases de Datos Factuales , Evaluación Preclínica de Medicamentos/métodos , Unión Europea , Probabilidad , Conejos , Estudios Retrospectivos , Pruebas de Toxicidad/normas , Naciones Unidas
2.
Altern Lab Anim ; 37(4): 437-44, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19807215

RESUMEN

The use of Integrated Testing Strategies (ITS) in toxicological hazard identification and characterisation is becoming increasingly common as a method for enabling the integration of diverse types of toxicology data. At present, there are no existing procedures and guidelines for the construction and validation of ITS, so a joint EPAA WG5-ECVAM workshop was held with the following objectives: a) to investigate the role of ITS and the need for validation of ITS in the different industry sectors (pharmaceuticals, cosmetics, chemicals); b) to formulate a common definition of ITS applicable across different sectors; c) to explore how and when Three Rs methods are used within ITS; and d) to propose a validation rationale for ITS and for alternative methods that are foreseen to be used within ITS. The EPAA provided a platform for comparing experiences with ITS across different industry sectors. It became clear that every ITS has to be adapted to the product type, R&D stage, and regulatory context. However, common features of ITS were also identified, and this permitted the formulation of a general definition of ITS in a regulatory context. The definition served as a basis for discussing the needs, rationale and process of formal ITS validation. One of the main conclusions was that a formal validation should not be required, unless the strategy will serve as full replacement of an in vivo study used for regulatory purposes. Finally, several challenges and bottlenecks to the ITS validation were identified, and it was agreed that a roadmap on how to address these barriers would be established by the EPAA partners.


Asunto(s)
Alternativas a las Pruebas en Animales , Evaluación Preclínica de Medicamentos/métodos , Pruebas de Toxicidad/métodos , Estudios de Validación como Asunto , Animales , Congresos como Asunto , Evaluación Preclínica de Medicamentos/normas , Educación , Industrias , Cooperación Internacional , Pruebas de Toxicidad/normas , Xenobióticos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA