Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Genet. mol. biol ; Genet. mol. biol;40(2): 468-479, Apr.-June 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-892409

RESUMEN

Abstract Although manioc is well adapted to nutrient-poor Oxisols of Amazonia, ethnobotanical observations show that bitter manioc is also frequently cultivated in the highly fertile soils of the floodplains and Amazonian dark earths (ADE) along the middle Madeira River. Because different sets of varieties are grown in each soil type, and there are agronomic similarities between ADE and floodplain varieties, it was hypothesized that varieties grown in ADE and floodplain were more closely related to each other than either is to varieties grown in Oxisols. We tested this hypothesis evaluating the intra-varietal genetic diversity and the genetic relationships among manioc varieties commonly cultivated in Oxisols, ADE and floodplain soils. Genetic results did not agree with ethnobotanical expectation, since the relationships between varieties were variable and most individuals of varieties with the same vernacular name, but grown in ADE and floodplain, were distinct. Although the same vernacular name could not always be associated with genetic similarities, there is still a great amount of variation among the varieties. Many ecological and genetic processes may explain the high genetic diversity and differentiation found for bitter manioc varieties, but all contribute to the maintenance and amplification of genetic diversity within the manioc in Central Amazonia.

2.
Genet Mol Biol ; 40(2): 468-479, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28399193

RESUMEN

Although manioc is well adapted to nutrient-poor Oxisols of Amazonia, ethnobotanical observations show that bitter manioc is also frequently cultivated in the highly fertile soils of the floodplains and Amazonian dark earths (ADE) along the middle Madeira River. Because different sets of varieties are grown in each soil type, and there are agronomic similarities between ADE and floodplain varieties, it was hypothesized that varieties grown in ADE and floodplain were more closely related to each other than either is to varieties grown in Oxisols. We tested this hypothesis evaluating the intra-varietal genetic diversity and the genetic relationships among manioc varieties commonly cultivated in Oxisols, ADE and floodplain soils. Genetic results did not agree with ethnobotanical expectation, since the relationships between varieties were variable and most individuals of varieties with the same vernacular name, but grown in ADE and floodplain, were distinct. Although the same vernacular name could not always be associated with genetic similarities, there is still a great amount of variation among the varieties. Many ecological and genetic processes may explain the high genetic diversity and differentiation found for bitter manioc varieties, but all contribute to the maintenance and amplification of genetic diversity within the manioc in Central Amazonia.

3.
Genetica ; 142(5): 419-31, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25178197

RESUMEN

Garlic is a spice and a medicinal plant; hence, there is an increasing interest in 'developing' new varieties with different culinary properties or with high content of nutraceutical compounds. Phenotypic traits and dominant molecular markers are predominantly used to evaluate the genetic diversity of garlic clones. However, 24 SSR markers (codominant) specific for garlic are available in the literature, fostering germplasm researches. In this study, we genotyped 130 garlic accessions from Brazil and abroad using 17 polymorphic SSR markers to assess the genetic diversity and structure. This is the first attempt to evaluate a large set of accessions maintained by Brazilian institutions. A high level of redundancy was detected in the collection (50 % of the accessions represented eight haplotypes). However, non-redundant accessions presented high genetic diversity. We detected on average five alleles per locus, Shannon index of 1.2, HO of 0.5, and HE of 0.6. A core collection was set with 17 accessions, covering 100 % of the alleles with minimum redundancy. Overall FST and D values indicate a strong genetic structure within accessions. Two major groups identified by both model-based (Bayesian approach) and hierarchical clustering (UPGMA dendrogram) techniques were coherent with the classification of accessions according to maturity time (growth cycle): early-late and midseason accessions. Assessing genetic diversity and structure of garlic collections is the first step towards an efficient management and conservation of accessions in genebanks, as well as to advance future genetic studies and improvement of garlic worldwide.


Asunto(s)
Ajo/genética , Variación Genética , Repeticiones de Microsatélite/genética , Filogenia , Alelos , Análisis de Varianza , Brasil , Análisis por Conglomerados , ADN de Plantas/genética , Ajo/clasificación , Frecuencia de los Genes , Genotipo , Desequilibrio de Ligamiento
4.
Genet. mol. biol ; Genet. mol. biol;26(4): 449-457, dec. 2003. tab, graf
Artículo en Inglés | LILACS | ID: lil-355290

RESUMEN

The ''cagaita tree'' (Eugenia dysenterica) is a plant found widespread in the Brazilian Cerrado. Its fruit is used for popular consumption and for industrial purposes. This study opens a new perspective for the generation of population genetic data and parameters estimates for devising sound collection and conservation procedures for Eugenia dysenterica. A battery of 356 primer pairs developed for Eucalyptus spp. was tested on the ''cagaita tree''. Only 10 primer pairs were found to be transferable between the two species. Using a polyacrilamide gel, an average of 10.4 alleles per locus was detected, in a sample of 116 individuals from 10 natural ''cagaita tree'' populations. Seven polymorphic loci allowed estimation of genetic parameters, including expected average heterozygosity He = 0,442, among population diversity, R ST = 0,268 and gene flow Nm = 0,680. Results indicated a potential of SSR locus transferability developed for Eucalyptus to other species of different genera, such as in the case of the ''cagaita tree''. The high genetic diversity among populations detected with SSR markers indicated that these markers are highly sensitive to detect population structure. Estimated Nm values and the existence of private alleles indicated reduced gene flow and consequently possible damage to the metapopulation structure.


Asunto(s)
Árboles/genética , Repeticiones de Microsatélite , Brasil , Marcadores Genéticos , Genética de Población , Plantas Medicinales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA