RESUMEN
This study mainly focuses on the preparation, characterization, and sorption performance for Cu(II) and Zn(II) by using nano-alumina material (NA) synthesized through the sol-gel method. The SEM, EDS, FT-IR, and XRD analysis methods were implemented to identify the micromorphology and crystal structure of the synthesized NA absorbent and its structure after the adsorbing procedure. The effect of effective variables including various absorbent dose, contact time, initial ion concentration, and temperature on the removal of Cu(II) and Zn(II) from aqueous solution by using NA was investigated through a single factor experiment. Kinetic studies indicated that adsorption of copper and zinc ions by NA was chemical adsorption. The adsorption isotherm data were fitted by Langmuir (R2: 0.919, 0.914), Freundlich (R2: 0.983, 0.993), and Temkin (R2: 0.876, 0.863) isotherms, indicating that copper and zinc ions were easily adsorbed by NA with maximum adsorption capacities of 87.7 and 77.5 mg/g for Cu2+ and Zn2+, respectively. Thermodynamic parameters indicated that the adsorption of Cu2+ was spontaneous(G<0) and the adsorption of Zn2+ might not be spontaneous (G > 0) by NA. Graphical abstract á .
Asunto(s)
Óxido de Aluminio/química , Cobre/química , Nanoestructuras/química , Zinc/química , Adsorción , Cobre/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Termodinámica , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Difracción de Rayos X , Zinc/aislamiento & purificaciónRESUMEN
Water pollution has been a significant issue in the Huai River Basin (HRB) of China since the late 1970s. In July and December 2013, two field investigations were carried out at 10 sites along the main streams of the basin. The monitoring indices contained both physicochemical variables and the structure and composition of phytoplankton communities. The correlations between communities and physicochemical variables were analyzed using cluster analysis and redundancy analysis. Moreover, water quality was evaluated using the comprehensive nutrition state index (TLI) and Shannon-Wiener diversity index (H). Results indicated that more phytoplankton species were present in December than in July, but total density was less in December. Phytoplankton communities in the midstream of the Shaying River were affected by the same physicochemical factors throughout the year, but ammonia nitrogen and total phosphorus had the greatest influence on these sites in July and December, respectively. The water pollution status of the sampling sites was much greater in the Shaying River midstream than at other sites. TLI was more suitable than H for assessing water quality in the study area. These results provide valuable information for policy makers and stakeholders in water quality assessment, water ecosystem restoration, and sustainable basin management in the HRB.