Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Medicine (Baltimore) ; 103(6): e35047, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335393

RESUMEN

OBJECTIVE: The objective of this study was to investigate the global research trends in herbal medicine for the treatment of cardiovascular disease (CVD) from 2000 to 2023. A bibliometric approach was employed to analyze international collaborations, knowledge structures, emerging trends, and research frontiers. METHOD: The Web of Science (WOS) core collection was utilized as the database, employing the search formula (((TS = (traditional Chinese medicine)) OR TS = (Chinese herbal medicinal ingredient)) OR TS = (Chinese herbal medicinal constituent)) AND TS = (cardiovascular disease) to conduct the search. The search period spanned from January 1, 2000, to February 14, 2023, and the literature type included articles and reviews. RESULTS: A total of 1478 papers were included in the analysis after searching the WOS database and excluding conference proceedings, news articles, retractions, editorials, and letters. China demonstrated the highest number of publications, followed by the United States and Taiwan (China). The institution with the highest publications was the Chinese Academy of Medical Sciences. China, the United States, and India were the main countries involved in research in this field, and there was significant collaboration among them. The hotspots related to herbal components for treating cardiovascular diseases from 2000 to 2023 included systematic reviews, ischemic reperfusion injury, global burden, type 2 diabetes, and protection. CONCLUSION: This paper provides a reference for the future development of herbal research in cardiovascular aspects by revealing the current status, hotspots, and trends of global herbal research in cardiovascular factors over more than 20 years. Identification of potential collaborators and institutions can assist researchers in exploring new directions for future research and discovering new perspectives for potential collaborations in this field.


Asunto(s)
Enfermedades Cardiovasculares , Fitoterapia , Humanos , Bibliometría , Enfermedades Cardiovasculares/tratamiento farmacológico
2.
Medicine (Baltimore) ; 102(46): e35248, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37986321

RESUMEN

BACKGROUND: Atherosclerosis (AS) is the cause of most cardiovascular diseases and imposes a huge economic burden on society. Erchen decoction (ECD) is an effective formula for treating AS, but its therapeutic mechanism remains unclear. This study will explore the mechanism of ECD mechanism for treating AS using network pharmacology and molecular docking. METHODS: We searched ECD chemical composition information and related targets via Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and SwissTargetPrediction databases, and gene names correction was performed using the UniProt database. AS-related targets were retrieved from OMIM, GeneCards, and DrugBank databases, and Venny 2.1 were used for intersection analysis. Protein-protein interaction network was constructed by the STRING database, and an interactive network of the drug-component-target-disease was drawn using the Cytoscape 3.9.0 software. Gene ontology and Kyoto Gene and Genome Encyclopedia enrichment analysis were performed by the DAVID database, and molecular docking validation of vital active ingredients and action targets of ECD was performed using AutoDock Vina software. RESULTS: The 127 active components of ECD act on AS by regulating 231 targets and 151 pathways. The 6 core components are quercetin, polyporenic acid C, 18α-hydroxyglycyrrhetic acid, glyuranolide, 3beta-hydroxychloroxy-24-methylene-8-lanostene-21-oic acid, and obacunone. They may regulate AS by regulating core target genes, such as JUN, SRC, AKT1, PTGS2, ESR1, AR, MAPK1, MAPK3, and RELA, and acting on multiple vital pathways, such as AGE-RAGE signaling pathway in diabetic complications, Lipid and AS, and Fluid shear stress and AS. Molecular docking showed that the selected target protein had good binding activity to the active ingredient. CONCLUSIONS: ECD has the characteristics of multi-components, multi-targets and multi-pathways in the treatment of AS. The results provide a theoretical basis for the clinical application of ECD and its mechanism.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Medicamentos Herbarios Chinos , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Aterosclerosis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China
3.
J Diabetes Res ; 2021: 9949302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692849

RESUMEN

The role of traditional Chinese medicine Prunella vulagaris L in the treatment of tumors and inflammation has been widely confirmed. We found that some signaling pathways of Prunella vulgaris L action can also regulate diabetes and hypertension, so we decided to study the active ingredients, potential targets and signaling pathway of Prunrlla vulgaris L, and explore the "multi-target, multi-pathway" molecular mechanism of Prunella vulgaris L on diabetes mellitus complicated with hypertension(DH). Methods. Based on TCMSP(Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and CNKI(China National Knowledge Infrastructure), the components and action targets related to Prunella vulgaris L were screened. The OMIM(Online Mendelian Inheritance in Man) and GeneCards (The human gene database) were used to search for targets related to DH. The "gene - drug - disease" relationship map was drawn by Cytoscape_v3.7.2 plug-in. The target was amplified by the STRING platform, and the "protein - protein" interaction relationship (PPI) network of the interacting target was obtained by the STRING online analysis platform and the Cytoscape_v3.7.2 plug-in. Finally, GO enrichment analysis and KEGG pathway enrichment analysis were conducted on David and Metascape platform to study the co-acting targets. Results. 11 active components, 41 key targets and 16 significant signaling pathways were identified from Prunella vulgaris L. The main active components of Prunella vulgaris L against DH were quercetin and kaumferol, etc, and potential action targets were IL-6 and INS, etc and signaling pathways were AGE-RAGE signaling pathway, TNF signaling pathway, MAPK signaling pathway, PI3K-AKT signaling pathway, etc. It involves in biological processes such as cell proliferation, apoptosis and inflammatory response. Conclusions. The main molecular mechanism of Prunella vulgaris L against DH is that sterols and flavonoids play an active role by affecting TNF signaling pathway, AGE-RAGE signaling pathway, MAPK pathway, PI3K-Akt pathway related targets such as IL-6 and INS.


Asunto(s)
Diabetes Mellitus/metabolismo , Medicamentos Herbarios Chinos/farmacología , Hipertensión/metabolismo , Prunella , Diabetes Mellitus/tratamiento farmacológico , Medicamentos Herbarios Chinos/química , Flavonoides/farmacología , Productos Finales de Glicación Avanzada/efectos de los fármacos , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Hipertensión/tratamiento farmacológico , Insulina/metabolismo , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fitosteroles/farmacología , Mapas de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quercetina , Receptor para Productos Finales de Glicación Avanzada/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA