RESUMEN
WRINKLED1 (WRI1), an APETALA2/ethylene-responsive-element-binding protein (AP2/EREBP) subfamily transcription factor, plays a crucial role in the transcriptional regulation of plant fatty acid biosynthesis. In this study, GmWRI1a was overexpressed in the soybean cultivar 'Dongnong 50' using Agrobacterium-mediated transformation to generate three transgenic lines with high seed oil contents. PCR and Southern blotting analysis showed that the T-DNA was inserted into the genome at precise insertion sites and was stably inherited by the progeny. Expression analysis using qRT-PCR and Western blotting indicated that GmWRI1a and bar driven by the CaMV 35S promoter were significantly upregulated in the transgenic plants at different developmental stages. Transcriptome sequencing results showed there were obvious differences in gene expression between transgenic line and transgenic receptor during seed developmental stages. KEGG analysis found that the differentially expressed genes mainly annotated to metabolic pathways, such as carbohydrated metabolism and lipid metabolism. A 2-year single-location field trial revealed that three transgenic lines overexpressing GmWRI1a (GmWRI1a-OE) showed a stable increase in seed oil content of 4.97-10.35%. Importantly, no significant effect on protein content and yield was observed. Overexpression of GmWRI1a changed the fatty acid composition by increasing the linoleic acid (C18:2) content and decreasing the palmitic acid (C16:0) content in the seed. The three GmWRI1a-OE lines showed no significant changes in agronomic traits. The results demonstrated that the three GmWRI1a overexpression lines exhibited consistent increases in seed oil content compared with that of the wild type and did not significantly affect the seed yield and agronomic traits. The genetic engineering of GmWRI1a will be an effective strategy for the improvement of seed oil content and value in soybean.
Asunto(s)
Glycine max , Semillas , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Aceite de Soja/genética , Aceite de Soja/metabolismo , Glycine max/genética , Glycine max/metabolismoRESUMEN
To expand the optional laser wavelengths of photodynamic therapy (PDT) for port wine stain (PWS), the feasibility of applying a 457 nm laser to the PDT for infantile PWS was analyzed by mathematical simulation and was validated by clinical experiment. Singlet oxygen yield of 457 nm PDT or 532 nm PDT in an infantile PWS model and an adult PWS model was theoretically simulated. Fifteen PWS patients (14 infants and 1 adult) with 40 spots were treated with 457 nm (20 spots) and 532 nm (20 spots), respectively, in two PDT courses. Simulation results showed that under the same power density and irradiation time, singlet oxygen yield of 457 nm PDT and 532 nm PDT are similar in infantile PWS vessels. Yet, in adult PWS vessels, singlet oxygen yield of 457 nm PDT is lower than 532 nm PDT. Clinical outcomes showed that no statistic difference existed between 457 nm PDT and 532 nm PDT for infantile PWS. The result of this study suggested that 457 nm wavelength laser has the potential to be applied in PDT for infantile PWS.