Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Sci ; 339: 111956, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101618

RESUMEN

Cinnamomum camphora has great economic value for its wide utilization in traditional medicine and furniture material, and releases lots of monoterpenes to tolerate high temperature. To uncover the adjusting function of monoterpenes on primary metabolism and promoting their utilization as anti-high temperature agents, the photosynthetic capacities, primary metabolite levels, cell ultrastructure and associated gene expression were surveyed in C. camphora when it was blocked monoterpene biosynthesis with fosmidomycin (Fos) and fumigated with camphor (a typical monoterpene in the plant) under high temperature (Fos+38 °C+camphor). Compared with the control (28 °C), high temperature at 38 °C decreased the starch content and starch grain size, and increased the fructose, glucose, sucrose and soluble sugar content. Meanwhile, high temperature also raised the lipid content, with the increase of lipid droplet size and numbers. These variations were further intensified in Fos+ 38 °C treatment. Compared with Fos+ 38 °C treatment, Fos+ 38 °C+camphor treatment improved the starch accumulation by promoting 4 gene expression in starch biosynthesis, and lowered the sugar content by suppressing 3 gene expression in pentose phosphate pathway and promoting 15 gene expression in glycolysis and tricarboxylic acid cycle. Meanwhile, Fos+ 38 °C+camphor treatment also lowered the lipid content, which may be caused by the down-regulation of 2 genes in fatty acid formation and up-regulation of 4 genes in fatty acid decomposition. Although Fos+ 38 °C+camphor treatment improved the photosynthetic capacities in contrast to Fos+ 38 °C treatment, it cannot explain the variations of these primary metabolite levels. Therefore, camphor should adjust related gene expression to maintain the primary metabolism in C. camphora tolerating high temperature.


Asunto(s)
Alcanfor , Cinnamomum camphora , Alcanfor/química , Alcanfor/metabolismo , Cinnamomum camphora/química , Cinnamomum camphora/genética , Cinnamomum camphora/metabolismo , Temperatura , Monoterpenos/metabolismo , Azúcares/metabolismo , Ácidos Grasos/metabolismo , Almidón/metabolismo , Lípidos
2.
Environ Pollut ; 335: 122305, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37580008

RESUMEN

Acetylcholine (ACh), an important neurotransmitter, plays a role in resistance to abiotic stress. However, the role of ACh during cadmium (Cd) resistance in duckweed (Lemna turionifera 5511) remains uncharacterized. In this study, the changes of endogenous ACh in duckweed under Cd stress has been investigated. Also, how exogenous ACh affects duckweed's ability to withstand Cd stress was studied. The ACh sensor transgenic duckweed (ACh 3.0) showed the ACh signal response under Cd stress. And ACh was wrapped and released in vesicles. Cd stress promoted ACh content in duckweed. The gene expression analysis showed an improved fatty acid metabolism and choline transport. Moreover, exogenous ACh addition enhanced Cd tolerance and decreased Cd accumulation in duckweed. ACh supplement reduced the root abscission rate, alleviated leaf etiolation, and improved chlorophyll fluorescence parameters under Cd stress. A modified calcium (Ca2+) flux and improved Cd2+ absorption were present in conjunction with it. Thus, we speculate that ACh could improve Cd resistance by promoting the uptake and accumulation of Cd, as well as the response of the Ca2+ signaling pathway. Also, plant-derived extracellular vesicles (PDEVs) were extracted during Cd stress. Therefore, these results provide new insights into the response of ACh during Cd stress.


Asunto(s)
Araceae , Cadmio , Cadmio/toxicidad , Cadmio/metabolismo , Acetilcolina/metabolismo , Antioxidantes/metabolismo , Estrés Fisiológico , Araceae/metabolismo
3.
Ecotoxicol Environ Saf ; 163: 594-603, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30077157

RESUMEN

Plant allelochemicals are considered as the source of effective, economic and friendly-environmental algaecides. To uncover the anti-algal activities of Cinnamomum camphora fresh leaves and their main algicidal agents, we investigated the inhibitory effects of water and methanol extracts from C. camphora fresh leaves on Microcystis aeruginosa and Chlamydomonas reinhardtii cell growth, analyzed the composition of the water and methanol extracts, and determined the main compounds in extracts on the growth of the two algae and their anti-algal mechanism from photosynthetic abilities. Water and methanol extracts from C. camphora fresh leaves can inhibit M. aeruginosa and C. reinhardtii cell growth, and methanol extracts showed stronger inhibitory effects, due to their more compounds and higher molar concentration. There were 23 compounds in the water extracts, mainly including terpenoids, esters, alcohols, and ketones. Compared to the water extracts, 9 new compounds were detected in the methanol extracts, and the molar concentration of total compounds in methanol extracts increased by 1.3 folds. Camphor, α-terpineol and linalool were 3 main compounds in the water and methanol extracts. Their mixture (1: 3: 6) and individual compound showed remarkable inhibition on M. aeruginosa and C. reinhardtii cell growth. The degradation of photosynthetic pigments and the reduction of maximum quantum yield of photosystem II (PSII) photochemistry, coefficient of photochemical quenching as well as apparent electron transport rate in C. reinhardtii cells aggravated gradually with increasing the concentration of the mixture and individual compound, while the non-photochemical dissipation of absorbed light energy increased gradually, which led to the decline of photosynthetic abilities. This indicated that camphor, α-terpineol and linalool were 3 main algicidal agents in C. camphora fresh leaf extracts, and they inhibited algal growth by inducing photosynthetic pigment degradation and declining PSII efficiency. Therefore, C. camphora fresh leaf extracts and their main components have potential utilization values as algaecides.


Asunto(s)
Chlamydomonas reinhardtii/efectos de los fármacos , Cinnamomum camphora/química , Herbicidas/toxicidad , Microcystis/efectos de los fármacos , Extractos Vegetales/toxicidad , Monoterpenos Acíclicos , Alcanfor/química , Alcanfor/aislamiento & purificación , Monoterpenos Ciclohexánicos , Ciclohexenos/química , Ciclohexenos/aislamiento & purificación , Transporte de Electrón , Herbicidas/aislamiento & purificación , Monoterpenos/química , Monoterpenos/aislamiento & purificación , Fotoquímica , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Hojas de la Planta/química
4.
Water Sci Technol ; 77(11-12): 2545-2554, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29944120

RESUMEN

Natural allelochemicals are considered as a source of algaecides. To uncover the anti-algal activity of Cinnamomum camphora fallen leaves and promote their usage as algaecides, the composition of their water and methanol extracts was analyzed, and the inhibitory effects of extracts on the growth of Microcystis aeruginosa and Chlamydomonas reinhardtii, and chlorophyll (Chl) content and photosynthetic abilities in C. reinhardtii were investigated. Twenty-five compounds were detected in the water extracts, mainly including terpenoids, esters, alcohols, and ketones. Compared to water extracts, there were more compounds and higher concentration in methanol extracts. Both water and methanol extracts inhibited the growth of the two algae, and 15 mg·ml-1 methanol extracts killed the algal cells after 48 h. The levels of Chl a and Chl b, as well as maximum quantum yield of photosystem II photochemistry (Fv/Fm) in C. reinhardtii cells reduced gradually with increasing the concentration of extracts, while the maximum quantum yield of non-photochemical de-excitation (φDO) increased gradually. At the same concentration, methanol extracts showed stronger inhibitory effects than water extracts, due to their higher number of compounds and higher concentration. Therefore, C. camphora fallen leaves have a potential value as an algaecide.


Asunto(s)
Chlamydomonas reinhardtii/efectos de los fármacos , Cinnamomum camphora/química , Microcystis/efectos de los fármacos , Extractos Vegetales/farmacología , Hojas de la Planta/química , Chlamydomonas reinhardtii/crecimiento & desarrollo , Clorofila/metabolismo , Clorofila A , Microcystis/crecimiento & desarrollo , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo
5.
Environ Geochem Health ; 40(4): 1283-1298, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29264818

RESUMEN

There is diverse phosphorus (P) in eutrophicated waters, but it is considered as a crucial nutrient for cyanobacteria growth due to its easy precipitation as insoluble salts. To uncover the effects of complex P nutrients on the emission of volatile organic compounds (VOCs) from cyanobacteria and their toxic effects on other algae, the VOCs from Microcystis flos-aquae supplied with different types and amount of P nutrients were analyzed, and the effects of VOCs and their two main compounds on Chlamydomonas reinhardtii growth were investigated. When M. flos-aquae cells were supplied with K2HPO4, sodium pyrophosphate and sodium hexametaphosphate as the sole P source, 27, 23 and 29 compounds were found, respectively, including furans, sulfocompounds, terpenoids, benzenes, aldehydes, hydrocarbons and esters. With K2HPO4 as the sole P source, the VOC emission increased with reducing P amount, and the maximum emission was found under Non-P condition. In the treatments of M. flos-aquae VOCs under Non-P condition and two main terpenoids (eucalyptol and limonene) in the VOCs, remarkable decreases were found in C. reinhardtii cell growth, photosynthetic pigment content and photosynthetic abilities. Therefore, we deduce that multiple P nutrients in eutrophicated waters induce different VOC emissions from cyanobacteria, and P amount reduction caused by natural precipitation and algal massive growth results in more VOC emissions. These VOCs play toxic roles in cyanobacteria becoming dominant species, and eucalyptol and limonene are two toxic agents.


Asunto(s)
Chlamydomonas reinhardtii/efectos de los fármacos , Microcystis/metabolismo , Fósforo/química , Compuestos Orgánicos Volátiles/toxicidad , Chlamydomonas reinhardtii/crecimiento & desarrollo , Chlamydomonas reinhardtii/metabolismo , Ciclohexanoles/farmacología , Ciclohexenos/farmacología , Eucaliptol , Eutrofización , Limoneno , Monoterpenos/farmacología , Fotosíntesis/efectos de los fármacos , Pigmentos Biológicos/metabolismo , Terpenos/farmacología , Compuestos Orgánicos Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA