Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 2288: 3-23, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270002

RESUMEN

High frequency of albino plant formation in isolated microspore or anther cultures is a great problem limiting the possibility of their exploitation on a wider scale. It is highly inconvenient as androgenesis-based doubled haploid (DH) technology provides the simplest and shortest way to total homozygosity, highly valued by plant geneticists, biotechnologists and especially, plant breeders, and this phenomenon constitutes a serious limitation of these otherwise powerful tools. The genotype-dependent tendency toward albino plant formation is typical for many monocotyledonous plants, including cereals like wheat, barley, rice, triticale, oat and rye - the most important from the economical point of view. Despite many efforts, the precise mechanism underlying chlorophyll deficiency has not yet been elucidated. In this chapter, we review the data concerning molecular and physiological control over proper/disturbed chloroplast biogenesis, old hypotheses explaining the mechanism of chlorophyll deficiency, and recent studies which shed new light on this phenomenon.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Grano Comestible/fisiología , Pigmentación , Fitomejoramiento/métodos , Clorofila/deficiencia , Clorofila/genética , Diploidia , Grano Comestible/genética , Haploidia , Homocigoto , Modelos Biológicos , Biología Molecular/métodos , Pigmentación/genética , Pigmentos Biológicos/deficiencia , Pigmentos Biológicos/genética , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Regeneración/genética , Regeneración/fisiología
2.
Plant Sci ; 287: 110189, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31481211

RESUMEN

Microspores exposed to some stress factors may display cell totipotency and could be reprogrammed towards embryogenic development. Plant breeding and genetic engineering widely use haploids/doubled haploids (DHs) derived from in vitro-cultured microspores, but the mechanism of this process remains poorly understood. Recently published data suggest that microspore embryogenesis (ME) is accompanied by changes in DNA methylation and chromatin reorganization. Here, we used two triticale DH lines (DH19 and DH28), significantly different with respect to embryogenic potential. To change DNA methylation levels, we applied two cytosine-analogs: 5-azacytidine (AC) and 2'-deoxy-5-azacytidine (DAC) treatments. We found that chemically-induced DNA demethylation caused chromatin relaxation and dysregulation of marker genes (TaTPD1-like, GSTF2, GSTA2, CHI3, Tad1, TaNF-YA7, SERK2, TaME1) related to ME. Both drugs showed significant cytotoxicity in a dose-dependent manner. We noticed that lines varied in terms of overall DNA methylation levels and responded in a different way to hypomethylation caused by the drugs. DH19 (low embryogenic) after inhibitors treatment, showed higher microspore viability, but its recalcitrancy was not overcome. For highly embryogenic DH28, we noted significantly higher effectiveness of embryo-like structure production and plant regeneration. In summary, our study provides new insight into the role of DNA methylation in ME initiation. They suggest potential benefits resulting from the utilization of epigenetic inhibitors to improve the process of DHs production.


Asunto(s)
Triticale/genética , Cruzamiento , Metilación de ADN , ADN de Plantas/genética , Haploidia , Polen/embriología , Polen/genética , Triticale/embriología
3.
Plant Cell Rep ; 38(2): 195-209, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30499031

RESUMEN

KEY MESSAGE: Depending on the capability for stress adaptation, the role played by glutathione in microspore embryogenesis consists of both antioxidative activity and stimulation of embryo-like structure development. The efficiency of microspore embryogenesis (ME) is determined by the complex network of internal and environmental factors. Among them, the efficient defence against oxidative stress seems to be one of the most important. The present study confirms this hypothesis showing the positive effect of glutathione-the most abundant cellular antioxidant-on ME in isolated microspore cultures of triticale (× Triticosecale Wittm.). For the first time, low temperature (LT) pre-treatment of tillers was combined with the exogenous application of glutathione and associated with the total activity of low-molecular weight antioxidants, the endogenous content and redox status of glutathione, and the effectiveness of ME. The results indicate that efficient antioxidative defence is the first, although not the only, prerequisite for effective ME. In responsive genotypes, LT alone stimulated antioxidative defence and decreased cell redox status, which was associated with increased cell viability and high frequency (ca. 20%) of microspore reprogramming. Application of glutathione had no effect either on the microspore viability or on the initial number of embryogenic microspores. However, it increased the number of embryo-like structures, probably by stimulating the next phases of its development. In recalcitrant genotypes, the main role of glutathione seems to be its participation in cell protection from oxidative stress. However, even enhanced antioxidative activity, which sustained cell viability and increased the number of embryogenic microspores, was insufficient for efficient haploid/doubled haploid plant production. Evidently, there are still other defective elements in the complex network of factors that regulate the process of ME.


Asunto(s)
Antioxidantes/metabolismo , Glutatión/metabolismo , Polen/embriología , Técnicas de Cultivo de Tejidos/métodos , Triticale/embriología , Frío , Peso Molecular , Oxidación-Reducción , Regeneración
4.
Plant Cell Rep ; 34(1): 47-62, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25261160

RESUMEN

KEY MESSAGE: Effective microspore embryogenesis in triticale is determined by a specific hormonal homeostasis: low value of IAA/cytokinins, IAA/ABA and cytokinins/ABA ratios as well as proper endogenous/exogenous auxin balance, which favours androgenic structure formation and green plant regeneration ability. The concentration of plant growth regulators (PGRs): auxins (Auxs), cytokinins (CKs) and abscisic acid (ABA) was measured in anthers of eight DH lines of triticale (× Triticosecale Wittm.), and associated with microspore embryogenesis (ME) responsiveness. The analysis was conducted on anthers excised from control tillers at the phase optimal for ME induction and then after ME-initiating tillers treatment (21 days at 4 °C). In control, IAA predominated among Auxs (11-39 nmol g(-1) DW), with IBA constituting only 1 % of total Auxs content. The prevailing isoforms of CKs were cis isomers of zeatin (121-424 pmol g(-1) DW) and zeatin ryboside (cZR, 146-432 pmol g(-1) DW). Surprisingly, a relatively high level (10-64 pmol g(-1) DW) of kinetin (KIN) was detected. Cold treatment significantly changed the levels of all analysed PGRs. The anthers of 'responsive' DH lines contained higher concentrations of IBA, cis and trans zeatin, cZR and ABA, and lower amount of IAA and KIN in comparison with 'recalcitrant' genotypes. However, the effects of exogenous ABA, p-chlorophenoxyisobutyric acid (PCIB) and 2,3,5-triiodobenzoic acid treatments suggest that none of the studied PGRs acts alone in the acquisition of embryogenic competency, which seems to be an effect of concerted PGRs crosstalk. The initiation of ME required a certain threshold level of ABA. A crucial prerequisite for high ME effectiveness was a specific PGRs homeostasis: lower Auxs level in comparison with CKs and ABA, and lower CKs/ABA ratio. A proper balance between endogenous Auxs in anthers and exogenous Auxs supplied by culture media was also essential.


Asunto(s)
Grano Comestible/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Poaceae/metabolismo , Polen/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Transporte Biológico/efectos de los fármacos , Células Cultivadas , Ácido Clofíbrico/farmacología , Frío , Citocininas/metabolismo , Citocininas/farmacología , Grano Comestible/citología , Grano Comestible/genética , Genotipo , Inmunohistoquímica , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Microscopía Fluorescente , Reguladores del Crecimiento de las Plantas/farmacología , Técnicas de Embriogénesis Somática de Plantas/métodos , Poaceae/citología , Poaceae/genética , Polen/embriología , Polen/genética , Análisis de Componente Principal , Regeneración/efectos de los fármacos , Regeneración/genética , Ácidos Triyodobenzoicos/farmacología
5.
Protoplasma ; 251(5): 1077-87, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24553810

RESUMEN

Plant embryogenesis is regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients during microspore embryogenesis remain to be identified. For the first time, we describe, using the DR5 or DR5rev reporter gene systems, the GFP- and GUS-based auxin biosensors to monitor auxin during Brassica napus androgenesis at cellular resolution in the initial stages. Our study provides evidence that the distribution of auxin changes during embryo development and depends on the temperature-inducible in vitro culture conditions. For this, microspores (mcs) were induced to embryogenesis by heat treatment and then subjected to genetic modification via Agrobacterium tumefaciens. The duration of high temperature treatment had a significant influence on auxin distribution in isolated and in vitro-cultured microspores and on microspore-derived embryo development. In the "mild" heat-treated (1 day at 32 °C) mcs, auxin localized in a polar way already at the uni-nucleate microspore, which was critical for the initiation of embryos with suspensor-like structure. Assuming a mean mcs radius of 20 µm, endogenous auxin content in a single cell corresponded to concentration of 1.01 µM. In mcs subjected to a prolonged heat (5 days at 32 °C), although auxin concentration increased dozen times, auxin polarization was set up at a few-celled pro-embryos without suspensor. Those embryos were enclosed in the outer wall called the exine. The exine rupture was accompanied by the auxin gradient polarization. Relative quantitative estimation of auxin, using time-lapse imaging, revealed that primordia possess up to 1.3-fold higher amounts than those found in the root apices of transgenic MDEs in the presence of exogenous auxin. Our results show, for the first time, which concentration of endogenous auxin coincides with the first cell division and how the high temperature interplays with auxin, by what affects delay early establishing microspore polarity. Moreover, we present how the local auxin accumulation demonstrates the apical-basal axis formation of the androgenic embryo and directs the axiality of the adult haploid plant.


Asunto(s)
Brassica napus/embriología , Respuesta al Choque Térmico/genética , Ácidos Indolacéticos/metabolismo , Polen/embriología , Agrobacterium tumefaciens/genética , Técnicas Biosensibles , Brassica napus/citología , Brassica napus/genética , División Celular/genética , Proteínas Fluorescentes Verdes/genética , Calor , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polen/citología , Polen/genética , Regiones Promotoras Genéticas/genética , Transformación Genética/genética
6.
Plant Reprod ; 26(3): 297-307, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23824237

RESUMEN

Miscanthus × giganteus is a popular energy crop, which due to its hybrid origin is only vegetatively reproduced. Asexual embryogenesis in anther and microspore culture leading to double haploids production could allow to regain the ability for sexual reproduction and to increase the biodiversity of the species. Therefore, the goal of this paper was to investigate the requirements of androgenesis in Miscanthus. The standard protocols used for monocotyledonous plants were applied with many modifications regarding the developmental stage of the explants at the time of culture initiation, stress treatment applied to panicles and isolated anthers as well as various chemical and physical parameters of in vitro culture conditions. Our results indicated that the induction of androgenesis in M. × giganteus is possible. However, the very low efficiency of the process and the lack of regeneration ability of the androgenic structures presently prevent the use of this technique.


Asunto(s)
Poaceae/embriología , Meiosis/genética , Meiosis/fisiología , Poaceae/citología , Poaceae/metabolismo , Polen/citología , Polen/metabolismo , Polen/fisiología
7.
Plant Cell Rep ; 32(9): 1465-75, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23736307

RESUMEN

KEY MESSAGE: A better understanding of androgenesis with a focus on the changes in plasma membrane fluidity and endogenous ABA content affecting embryogenesis induction in microspore suspension of B. napus. Changes in plasma membrane fluidity (MF) and ABA content associated with androgenesis induction were under the study. Both parameters were monitored in microspores of two Brassica napus L. genotypes differing in their response to androgenic induction under heat (1 day at 32 °C). MF was assessed by DPH method. ABA content was evaluated by ELISA. Heat caused microspores' plasma membrane to become more rigid. Lower MF in microspores of 'DH 4079' (of high androgenic potential) seems to maintain proper cell protection and leads to efficient embryogenesis induction. Plasma membrane remodelling coincided with changes of ABA content in microspores and in the culture medium in both genotypes. ABA concentration (µM) and ABA content (fmol per 10(4) microspores or pmol g(-1) FW) were for the first time measured in microspores. ABA concentration (µM) in microspores and in the culture medium (nM) differed significantly for the genotype and the treatment. The interaction between both variables was also significant. In general, ABA content ranged from <3.5 to 87.1 fmol per 10(4) microspores. The highest content of ABA was detected in 'DH 4079' microspores at 32 °C. Assuming a mean microspores' radius of 10 µm, it corresponds to ABA concentration of 2.1 µM. Heat shock resulted in quantum of medium pH reduction (0.1-0.2) and increased levels of ABA in microspores and in the medium of both tested genotypes. However, heat induced increase of ABA content in microspores of non-responsive 'Campino' had no clear-cut impact, on androgenesis induction efficiency, which suggests a more complex mechanism of process initiation.


Asunto(s)
Ácido Abscísico/metabolismo , Brassica napus/genética , Membrana Celular/metabolismo , Fluidez de la Membrana , Polen/citología , Brassica napus/crecimiento & desarrollo , Flores/metabolismo , Genotipo , Calor , Polen/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA