Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Nutr Biochem ; 119: 109410, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37364793

RESUMEN

The gut has been suggested as the first organ to be affected by unbalanced diets contributing to the obesogenic process. This study aimed to test a short time-course exposition model to a known pro- or anti-inflammatory enriched fatty diet to understand the early gut alterations. Male mice were exposed to the chow diet (CT), high-fat (HF) diet, or a high-fat diet partially replaced on flaxseed oil (FS), rich in omega-3 (ω3), for 14 days. HF and FS increased the total body weight mass compared with the CT group, but FS reduced the epididymal fat depot compared to HF. The bioinformatics from mice and human databases showed the Zo1-Ocln-Cldn7 tight junctions as the main protein-triad. In the ileum, the HF diet has increased IL1ß transcript and IL1ß, TNFα, and CD11b proteins, but reduced the tight junctions (Zo1, Ocln, and Cld7) compared to the CT group. Despite the FS diet being partially efficient in protecting the ileum against inflammation, the tight junctions were increased, compared to the HF group. The GPR120 and GPR40 receptors were unaffected by diets, but GPR120 was colocalized on the surface of ileum macrophages. The short period of a high-fat diet was enough to start the obesogenic process, ileum inflammation, and reduce the tight junctions. Flaxseed oil did not protect efficiently against dysmetabolism. Still, it increased the tight junctions, even without alteration on inflammatory parameters, suggesting the protection against gut permeability during early obesity development.


Asunto(s)
Ácidos Grasos Omega-3 , Aceite de Linaza , Humanos , Masculino , Animales , Ratones , Aceite de Linaza/farmacología , Uniones Estrechas/metabolismo , Ácidos Grasos Insaturados , Inflamación/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Ácidos Grasos
2.
J Nutr Biochem ; 114: 109270, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36706930

RESUMEN

It is known that long-term high-fat diet (HF) feeding drastically affects the adipose tissue, contributing to metabolic disorders. Recently, short-term HF consumption was shown to affect different neuronal signaling pathways. Thus, we aimed to evaluate the inflammatory effects of a short-term HF and whether a diet containing omega-3 fatty acid fats from flaxseed oil (FS) has protective effects. Mice were divided into three groups for 3 d, according to their diets: Control group (CT), HF, or FS for 3 d. Lipid profiles were assessed through mass spectrometry and inflammatory markers by RT-qPCR and Western blotting. After short-term HF, mice increased food intake, body weight, adiposity, and fasting glucose. Increased mRNA content of Ccl2 and Tnf was demonstrated in the HF compared to CT in mesenteric adipose tissue. In the liver, TNFα protein was higher in the HF group than in CT, followed by a decreased polyunsaturated fatty acids tissue incorporation in HF. On the other hand, the consumption of FS reduced food intake and fasting glucose, as well as increased omega-3 fatty acid incorporation in MAT and the liver. However, short-term FS was insufficient to control the early inflammation triggered by HF in MAT and the liver. These data demonstrated that a 3-d HF diet is enough to damage glucose homeostasis and trigger inflammation. In contrast, short-term FS protects against increased food intake and fasting glucose but not inflammation in mice.


Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos Omega-3 , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Aceite de Linaza/farmacología , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo , Inflamación/metabolismo , Tejido Adiposo/metabolismo , Glucosa/metabolismo , Ratones Endogámicos C57BL
3.
Trials ; 22(1): 927, 2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34922604

RESUMEN

The low-grade inflammation is pivotal in obesity and its comorbidities; however, the inflammatory proteins are out of target for traditional drug therapy. Omega-3 (ω3) fatty acids can modulate the downstream signaling of Toll-like receptor (TLR) and tumor necrosis factor-α receptor (TNFα) through GPR120, a G-protein-coupled receptor, a mechanism not yet elucidated in humans. This work aims to investigate if the ω3 supplementation, at a feasible level below the previously recommended level in the literature, is enough to disrupt the inflammation and endoplasmic reticulum stress (ER-stress), and also if in acute treatment (3 h) ω3 can activate the GPR120 in peripheral blood mononuclear cells (PBMC) and leukocytes from overweight non-alcoholic fatty liver disease (NAFLD) participants. The R270H variant of the Ffar4 (GPR120 gene) will also be explored about molecular responses and blood lipid profiles. A triple-blind, prospective clinical trial will be conducted in overweight men and women, aged 19-75 years, randomized into placebo or supplemented (2.2 g of ω3 [EPA+DHA]) groups for 28 days. For sample calculation, it was considered the variation of TNFα protein and a 40% dropout rate, obtaining 22 individuals in each group. Volunteers will be recruited among patients with NAFLD diagnosis. Anthropometric parameters, food intake, physical activity, total serum lipids, complete fatty acid blood profile, and glycemia will be evaluated pre- and post-supplementation. In the PBMC and neutrophils, the protein content and gene expression of markers related to inflammation (TNFα, MCP1, IL1ß, IL6, IL10, JNK, and TAK1), ER-stress (ATF1, ATF6, IRE1, XBP1, CHOP, eIF2α, eIF4, HSP), and ω3 pathway (GPR120, ß-arrestin2, Tab1/2, and TAK1) will be evaluated using Western blot and RT-qPCR. Participants will be genotyped for the R270H (rs116454156) variant using the TaqMan assay. It is hypothesized that attenuation of inflammation and ER-stress signaling pathways in overweight and NAFLD participants will be achieved through ω3 supplementation through binding to the GPR120 receptor. TRIAL REGISTRATION: ClinicalTrials.gov #RBR-7x8tbx. Registered on May 10, 2018, with the Brazilian Registry of Clinical Trials.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Estrés del Retículo Endoplásmico , Humanos , Inflamación , Leucocitos Mononucleares , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Sobrepeso , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Amino Acids ; 53(9): 1391-1403, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34255136

RESUMEN

Interventions that can modulate subcutaneous white adipose tissue (scWAT) function, such as exercise training and nutritional components, like taurine, modulate the inflammatory process, therefore, may represent strategies for obesity treatment. We investigated the effects of taurine supplementation in conjunction with exercise on inflammatory and oxidative stress markers in plasma and scWAT of obese women. Sixteen obese women were randomized into two groups: Taurine supplementation group (Tau, n = 8) and Taurine supplementation + exercise group (Tau + Exe, n = 8). The intervention was composed of daily taurine supplementation (3 g) and exercise training for 8 weeks. Anthropometry, body fat composition, and markers of inflammatory and oxidative stress were determined in plasma and scWAT biopsy samples before and after the intervention. We found that, although taurine supplementation increased taurine plasma levels, no changes were observed for the anthropometric characteristics. However, Tau alone decreased interleukin-6 (IL-6), and in conjunction with exercise (Tau + Exe), increased anti-inflammatory interleukins (IL-15 and IL10), followed by reduced IL1ß gene expression in the scWAT of obese women. Tau and Tau + Exe groups presented reduced adipocyte size and increased connective tissue and multilocular droplets. In conclusion, taurine supplementation in conjunction with exercise modulated levels of inflammatory markers in plasma and scWAT, and improved scWAT plasticity in obese women, promoting protection against obesity-induced inflammation. TRN NCT04279600 retrospectively registered on August 18, 2019.


Asunto(s)
Tejido Adiposo Blanco/fisiología , Citocinas/sangre , Suplementos Dietéticos , Ejercicio Físico , Obesidad/terapia , Grasa Subcutánea/fisiología , Taurina/administración & dosificación , Tejido Adiposo , Adulto , Biomarcadores/sangre , Composición Corporal , Femenino , Humanos , Persona de Mediana Edad , Obesidad/sangre , Obesidad/patología , Adulto Joven
5.
Exerc Immunol Rev ; 27: 7-23, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33965898

RESUMEN

The hypothalamus plays a critical role in the control of food consumption and energy expenditure. Fatty diets can elicit an inflammatory response in specific hypothalamic cells, including astrocytes, tanycytes, and microglia, disrupting anorexigenic signals in region-specific hypothalamic neurons, contributing to overeating and body weight gain. In this study, we present an update regarding the knowledge of the effects of physical exercise on inflammatory signaling and circuits to control hunger in the hypothalamus in obesity conditions. To try to understand changes in the hypothalamus, we review the use of magnetic resonance/anorexigenic hormone analysis in humans, as well as in animal models to explore the physiological and molecular mechanism by which exercise modulates satiety signals, such as the central anti-inflammatory response, myokine delivery from skeletal muscle, and others. The accumulation of scientific evidence in recent years allows us to understand that exercise contributes to weight control, and it is managed by mechanisms that go far beyond "burning calories."


Asunto(s)
Ejercicio Físico , Hipotálamo , Saciedad , Animales , Humanos , Inflamación , Obesidad
6.
Clin Nutr ; 40(4): 2180-2187, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33051044

RESUMEN

PURPOSE: To evaluate the effects of taurine supplementation associated or not with chronic exercise on body composition, mitochondrial function, and expression of genes related to mitochondrial activity and lipid oxidation in the subcutaneous white adipose tissue (scWAT) of obese women. METHODS: A randomized and double-blind trial was developed with 24 obese women (BMI 33.1 ± 2.9 kg/m2, 32.9 ± 6.3 y) randomized into three groups: Taurine supplementation group (Tau, n = 8); Exercise group (Ex, n = 8); Taurine supplementation + exercise group (TauEx, n = 8). The intervention was composed of 3 g of taurine or placebo supplementation and exercise training for eight weeks. Anthropometry, body fat composition, indirect calorimetry, scWAT biopsy for mitochondrial respiration, and gene expression related to mitochondrial activity and lipid oxidation were assessed before and after the intervention. RESULTS: No changes were observed for the anthropometric characteristics. The Ex group presented an increased resting energy expenditure rate, and the TauEx and Ex groups presented increased lipid oxidation and a decreased respiratory quotient. Both trained groups (TauEx and Ex) demonstrated improved scWAT mitochondrial respiratory capacity. Regarding mitochondrial markers, no changes were observed for the Tau group. The TauEx group had higher expression of CIDEA, PGC1a, PRDM16, UCP1, and UCP2. The genes related to fat oxidation (ACO2 and ACOX1) were increased in the Tau and Ex groups, while only the TauEx group presented increased expression of CPT1, PPARa, PPARγ, LPL, ACO1, ACO2, HSL, ACOX1, and CD36 genes. CONCLUSION: Taurine supplementation associated with exercise improved lipid metabolism through the modulation of genes related to mitochondrial activity and fatty acid oxidation, suggesting a browning effect in the scWAT of obese women.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Ejercicio Físico , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Obesidad/metabolismo , Taurina/administración & dosificación , Adulto , Composición Corporal/efectos de los fármacos , Suplementos Dietéticos , Método Doble Ciego , Metabolismo Energético/efectos de los fármacos , Femenino , Expresión Génica , Humanos , Peroxidación de Lípido/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Oxidación-Reducción/efectos de los fármacos , Placebos , Grasa Subcutánea
7.
Cytokine ; 123: 154741, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31226435

RESUMEN

BACKGROUND: Irisin is a myokine/adipokine that under stimulus of physical exercise is able to improve thermogenic capacity in adipose tissue. Likewise, taurine supplementation has demonstrated similar effects on energy metabolism. Therefore, we hypothesized that taurine supplementation combined with physical training may induce an increase in irisin concentrations, optimizing energy metabolism in obese individuals. OBJECTIVE: To evaluate if taurine supplementation associated with a high intensity physical training program increases irisin levels in obese women. METHODS: double-blind study with 22 obese women (BMI 32.4 ±â€¯2.0 kg/m2, 36.6 ±â€¯6.4 years and sedentary) who were randomly divided into two groups, control group (GC, n = 14), exercised and supplemented with placebo (3 g of starch), and taurine group (GTAU, n = 8), exercised and supplemented with taurine (3 g). The subjects performed high intensity physical training, Deep Water Running (DWR), for 8 weeks, 3 times/week, for 50 min per training session, at 70-85% maximum heart rate. Resting metabolic rate (RMR) was evaluated by indirect calorimetry, body composition by deuterium oxide, plasma taurine by HPLC, plasma irisin by Multiplex Kit, and food consumption by food records. The results were analyzed by an ANOVA two way repeated measures mixed model, with the Sidak post hoc (p < 0.05). RESULTS: No changes were observed in body composition. DWR increased RMR independent of supplementation (p < 0.001) and irisin levels (pg/mL) showed a significant difference only in the GTAU in 1 h after exercise (p < 0.001). CONCLUSION: DWR associated with taurine supplementation resulted in increased plasma irisin concentrations after physical training in obese adult women.


Asunto(s)
Terapia por Ejercicio , Fibronectinas/sangre , Obesidad/sangre , Obesidad/terapia , Taurina/administración & dosificación , Adulto , Método Doble Ciego , Femenino , Humanos
8.
J Nutr Biochem ; 66: 52-62, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30771734

RESUMEN

GPR120 and GPR40 were recently reported as omega-3 (ω3) receptors with anti-inflammatory properties. Physical exercise could increase the expression of these receptors in the liver, improving hepatic metabolism in obesity and type 2 diabetes. Our aim was to investigate GPR120/40 in the liver of lean and obese mice after acute or chronic physical exercise, with or without the supplementation of ω3 rich flaxseed oil (FS), as well as assess the impact of exercise and FS on insulin signaling and inflammation. Mice were fed a high-fat diet (HF) for 4 weeks to induce obesity and subsequently subjected to exercise with or without FS, or FS alone. Insulin signaling, inflammatory markers and GPR120/40 and related cascades were measured. Chronic, but not acute, exercise and FS increased GPR120, but not GPR40, activating ß-arrestin-2 and decreasing the inflammatory response, as well as reducing fat depots in liver and adipose tissue. Exercise or a source of ω3 led to a higher tolerance to fatigue and an increased running distance and speed. The combination of physical exercise and ω3 food sources could provide a new strategy against obesity through the modulation of hepatic GPR120 and an increase in exercise performance.


Asunto(s)
Ácidos Grasos Insaturados/farmacología , Aceite de Linaza/química , Hígado/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Tejido Adiposo , Animales , Antiinflamatorios no Esteroideos/farmacología , Dieta Alta en Grasa/efectos adversos , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Obesidad/dietoterapia , Obesidad/metabolismo , Condicionamiento Físico Animal
9.
Sci Rep ; 8(1): 14318, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30254287

RESUMEN

The chronic and low-grade inflammation induced by obesity seem to be the "first hit" to retinopathy associated to diabetes type 2. Herein, we hypothesized that omega-3 fatty acids from flaxseed oil enriched diet disrupt the pro-inflammatory status in the retina, protecting against retinopathy development. For eight weeks under a high-fat diet (HF), several physiological parameters were monitored to follow the metabolic homeostasis disruption. After this period, mice were treated with a HF substituted in part of lard by flaxseed oil (FS) for another eight weeks. Food behavior, weight gain, glucose and insulin sensitivity, electroretinography, RT-qPCR and western blots were carried out. The HF was able to induce a pro-inflammatory background in the retina, changing IL1ß and TNFα. VEGF, a master piece of retinopathy, had early onset increased also induced by HF. The FS-diet was able to decrease inflammation and retinopathy and improved retinal electro stimuli compared to HF group. GPR120 and GPR40 (G Protein-Coupled Receptors 120 and 40), an omega-3 fatty acid receptors, were detected in the retina for the first time. FS-diet modulated the gene expression and protein content of these receptors. Thus, unsaturated fatty acids protect the retina from diabetes type 2 mice model from disease progression.


Asunto(s)
Retinopatía Diabética/metabolismo , Retinopatía Diabética/prevención & control , Ácidos Grasos Omega-3/farmacología , Aceite de Linaza/química , Receptores Acoplados a Proteínas G/metabolismo , Animales , Retinopatía Diabética/patología , Masculino , Ratones , Ratones Obesos , Retina/efectos de los fármacos , Retina/patología
10.
Neurosci Lett ; 659: 14-17, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28866049

RESUMEN

The mitogen-activated kinase phosphatase-3 (MKP-3) has gained great importance in the scientific community by acting as a regulator of the cell cycle through dephosphorylation of FoxO1, an important transcription factor involved in the insulin intracellular signaling cascade. When dephosphorylated and translocated to the nuclei, FoxO1 can promote the transcription of orexigenic neuropeptides (NPY/AgRP) in the hypothalamus, whereas insulin signaling is responsible for the disruption of this process. However, it is not understood if the hypothalamic activation of MKP-3 affects FoxO1 phosphorylation, and we hypothesized that MKP-3 overexpression reduces the capacity of the insulin signal to phosphorylate FoxO1. In the present study, we overexpressed the DUSP6 gene through an injection of adenovirus directly into the hypothalamic third ventricle of Swiss mice. The colocalization of the adenovirus was confirmed by the immunofluorescence assay. Then, MKP-3 overexpression resulted in a significant reduction of hypothalamic FoxO1 phosphorylation after insulin stimulation. This effect was independent of changes in Akt phosphorylation. Thus, the role of MKP-3 in the hypothalamus is closely associated with FoxO1 dephosphorylation and may provide a potential therapeutic target against hypothalamic disorders related to obesity and unbalanced food intake control.


Asunto(s)
Fosfatasa 6 de Especificidad Dual/genética , Fosfatasa 6 de Especificidad Dual/metabolismo , Proteína Forkhead Box O1/metabolismo , Hipotálamo/metabolismo , Adenoviridae/genética , Animales , Fosfatasa 6 de Especificidad Dual/biosíntesis , Vectores Genéticos/genética , Insulina/farmacología , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo
11.
Drug Dev Res ; 78(5): 203-209, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28718949

RESUMEN

Preclinical Research Metabolic disorders are responsible for more than 60% of all deaths worldwide. Calcitriol or vitamin D (vitD) deficiency is associated with a large proportion of these diseases is an important therapeutic target for exploration. This study evaluated the administration of high doses of vitD (3000 IU/kg) in obese and insulin-resistant C57BL/6J mice. Our results demonstrated that although high doses of vitD provided metabolic benefits such as increased insulin sensitivity and decreased body mass, this was associated with significant damage in the kidneys of obese mice. These findings support the role of vitD as a therapeutic strategy against metabolic disorders. However, caution is required with the dose administrated, and the renal damage associated still needs to be investigated. Drug Dev Res 78 : 203-209, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Metabolismo Energético/efectos de los fármacos , Obesidad/tratamiento farmacológico , Vitamina D/administración & dosificación , Animales , Índice de Masa Corporal , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Relación Dosis-Respuesta a Droga , Resistencia a la Insulina , Masculino , Ratones , Vitamina D/efectos adversos
12.
Appl Physiol Nutr Metab ; 42(4): 354-360, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28177743

RESUMEN

Downhill running-based overtraining model increases the hypothalamic levels of IL-1ß, TNF-α, SOCS3, and pSAPK-JNK. The aim of the present study was to verify the effects of 3 overtraining protocols on the levels of BiP, pIRE-1 (Ser724), pPERK (Thr981), pelF2α (Ser52), ATF-6, GRP-94, caspase 4, caspase 12, pAKT (Ser473), pmTOR (Ser2448), and pAMPK (Thr172) proteins in the mouse hypothalamus. The mice were randomized into the control, overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR) groups. After the overtraining protocols (i.e., at the end of week 8), hypothalamus was removed and used for immunoblotting. The OTR/down group exhibited increased levels of all of the analyzed endoplasmic reticulum stress markers in the hypothalamus at the end of week 8. The OTR/up and OTR groups exhibited increased levels of BiP, pIRE-1 (Ser724), and pPERK (Thr981) in the hypothalamus at the end of week 8. There were no significant differences in the levels of caspase 4, caspase 12, pAKT (Ser473), pmTOR (Ser2448), and pAMPK (Thr172) between the experimental groups at the end of week 8. In conclusion, the 3 overtraining protocols increased the endoplasmic reticulum stress at the end of week 8.


Asunto(s)
Trastornos de Traumas Acumulados/metabolismo , Estrés del Retículo Endoplásmico , Hipotálamo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Condicionamiento Físico Animal/efectos adversos , Esfuerzo Físico , Animales , Apoptosis , Biomarcadores/metabolismo , Western Blotting , Trastornos de Traumas Acumulados/etiología , Trastornos de Traumas Acumulados/inmunología , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Hipotálamo/enzimología , Hipotálamo/inmunología , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Neuronas/enzimología , Neuronas/inmunología , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Distribución Aleatoria , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismo
14.
Med Sci Sports Exerc ; 47(8): 1613-23, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25412294

RESUMEN

PURPOSE: This study aims to evaluate the effects of acute exercise on tribbles homolog 3 (TRB3) protein levels and on the interaction between TRB3 and Akt proteins in the hypothalamus of obese rats. In addition, we evaluated the relationship between TRB3 and endoplasmic reticulum (ER) stress and verified whether an acute exercise session influences them. METHODS: In the first part of the study, the rats were divided into three groups: control (lean), fed standard rodent chow; DIO, fed a high-fat diet; and DIO-EXE, fed a high-fat diet and submitted to a swimming acute exercise protocol. In the second part of the study, we used three other groups: control (lean) group receiving an intracerebroventricular (i.c.v.) infusion of vehicle, lean group receiving an i.c.v. infusion of thapsigargin, and lean group receiving an i.c.v. infusion of thapsigargin and performing an acute exercise session. Four hours after the exercise session, food intake was measured, and the hypothalamus was dissected and separated for subsequent protein analysis by immunoblotting and real-time polymerase chain reaction. RESULTS: The acute exercise session reduced TRB3 protein levels, disrupted the interaction between TRB3 and Akt proteins, increased the phosphorylation of Foxo1, and restored the anorexigenic effects of insulin on the hypothalamus of DIO rats. Interestingly, the suppressive effects of acute exercise on TRB3 protein levels may be related, at least in part, to decreased ER stress (evaluated though pancreatic ER kinase phosphorylation and C/EBP homologous protein levels) in the hypothalamus. CONCLUSION: Exercise-mediated reduction of hypothalamic TRB3 protein levels may be associated with reduction of ER stress. These data provide a new mechanism by which an acute exercise session improves insulin sensitivity in the hypothalamus and restores food intake control in obesity.


Asunto(s)
Hipotálamo/metabolismo , Obesidad/sangre , Condicionamiento Físico Animal , Esfuerzo Físico/fisiología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/sangre , Animales , Proteínas Serina-Treonina Quinasas/sangre , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA