Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 301: 115817, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36228889

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Preparations from the bark and leaves of Schinus terebinthifolia Raddi are commonly used to treat toothaches and sore throats. The use of medications based on leaves of this plant has also been reported for pain of arthritis, toothache, and sore throat. Some evidence indicated that the lectin SteLL is an antinociceptive agent from leaves. AIM OF THE STUDY: This study evaluated the antinociceptive activity of S. terebinthifolia leaf lectin (SteLL) using mouse models of peripheral and central nociception. MATERIALS AND METHODS: Animals were treated intraperitoneally with SteLL at 1, 5, and 10 mg/kg. An acetic acid-induced abdominal writhing test was performed to screen for the antinociceptive effect of the lectin. Next, the formalin test was used to assess the effects of SteLL on neurogenic (first phase) and inflammatory (second phase) pain, as well as to investigate the involvement of the carbohydrate-recognition domain (CRD) of SteLL and opioid receptors in the antinociceptive effect. The tail immersion test was performed to assess the central antinociception. Additionally, a rotarod test was performed to evaluate the effects of lectin on motor coordination in mice. RESULTS: SteLL reduced the number of acetic acid-induced writhes by 83.5-100.0%. In the first phase of the formalin test, SteLL reduced paw licking time by 49.4-50.5%, while in the second phase, SteLL reduced paw licking time by 80.5-82.6%. This antinociceptive effect was reversed by the previous incubation of the lectin with ovalbumin (indicating the possible involvement of the CRD) and by the administration of naloxone, a nonselective opioid receptor antagonist. When testing selective antagonists of opioid receptors (µ, δ, and κ), only naltrindole, a selective δ receptor antagonist, blocked the antinociceptive action of SteLL during the second phase of the formalin test. In the tail immersion test, SteLL (1, 5, and 10 mg/kg) administration reduced sensitivity to thermal stimulus, which was observed even after 2 h. SteLL (10 mg/kg) did not affect animal motor coordination in rotarod test when compared to the control group. CONCLUSION: SteLL has peripheral and central analgesic action involving opioid receptor modulation without affecting the motor coordination of animals. These results provide new perspectives for developing analgesic agents using lectins.


Asunto(s)
Anacardiaceae , Lectinas , Animales , Ratones , Analgésicos , Carbohidratos , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Hojas de la Planta , Receptores Opioides
2.
Int J Biol Macromol ; 126: 291-297, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30583005

RESUMEN

Lectins are carbohydrate-binding proteins broadly distributed in plants and have several biological functions, including antimicrobial action. Portulaca elatior is a Caatinga plant whose chemical composition and biotechnological potential have not been extensively studied. In this work, a lectin was isolated from P. elatior root extract and evaluated for antimicrobial activity. The P. elatior root lectin (PeRoL) showed native molecular mass of 33 kDa, pI 3.8 and is comprised of two subunits of 15 kDa linked by disulfide bonds. No sequence similarities with Viridiplantae proteins were observed. The PeRoL hemagglutinating activity (HA) was not affected by heating and was detected in a pH ranging from 4.0 to 8.0. Trehalose was identified as an endogenous inhibitor of PeRoL present in the roots. Bacteriostatic activity was detected against Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus (minimal inhibitory concentration of 8.1, 32.5 and 4.06 µg/mL, respectively). PeRoL induced the death of Candida albicans, Candida parapsilosis, Candida krusei, and Candida tropicalis cells, with a minimal fungicidal concentration of 16 µg/mL. The lectin (100 µg/mL) was not cytotoxic to human peripheral blood mononuclear cells (PBMCs) and did not show hemolytic activity. In conclusion, the roots of P. elatior contain a trehalose-binding, thermostable, and antimicrobial lectin.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Lectinas/farmacología , Raíces de Plantas/química , Portulaca/química , Trehalosa/metabolismo , Secuencia de Aminoácidos , Hemaglutinación/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Lectinas/aislamiento & purificación , Péptidos/química , Extractos Vegetales/farmacología , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA