Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38069087

RESUMEN

Inspiratory muscle training (IMT) is known to promote physiological benefits and improve physical performance in endurance sports activities. However, the metabolic adaptations promoted by different IMT prescribing strategies remain unclear. In this work, a longitudinal, randomized, double-blind, sham-controlled, parallel trial was performed to investigate the effects of 11 weeks (3 days·week-1) of IMT at different exercise intensities on the serum metabolomics profile and its main regulated metabolic pathways. Twenty-eight healthy male recreational cyclists (30.4 ± 6.5 years) were randomized into three groups: sham (6 cm·H2O of inspiratory pressure, n = 7), moderate-intensity (MI group, 60% maximal inspiratory pressure (MIP), n = 11) and high-intensity (HI group, 85-90% MIP, n = 10). Blood serum samples were collected before and after 11 weeks of IMT and analyzed by 1H NMR and UHPLC-HRMS/MS. Data were analyzed using linear mixed models and metabolite set enrichment analysis. The 1H NMR and UHPLC-HRMS/MS techniques resulted in 46 and 200 compounds, respectively. These results showed that ketone body metabolism, fatty acid biosynthesis, and aminoacyl-tRNA biosynthesis were upregulated after IMT, while alpha linolenic acid and linoleic acid metabolism as well as biosynthesis of unsaturated fatty acids were downregulated. The MI group presented higher MIP, Tryptophan, and Valine levels but decreased 2-Hydroxybutyrate levels when compared to the other two studied groups. These results suggest an increase in the oxidative metabolic processes after IMT at different intensities with additional evidence for the upregulation of essential amino acid metabolism in the MI group accompanied by greater improvement in respiratory muscle strength.


Asunto(s)
Ejercicios Respiratorios , Suero , Humanos , Masculino , Ejercicios Respiratorios/métodos , Cromatografía Líquida de Alta Presión , Fuerza Muscular/fisiología , Espectroscopía de Protones por Resonancia Magnética , Músculos Respiratorios , Estudios Longitudinales
2.
Philos Trans A Math Phys Eng Sci ; 379(2212): 20200251, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34689616

RESUMEN

We propose a procedure suitable for automated synchrogram analysis for setting the threshold below which phase variability between two marker event series is of such a negligible amount that the null hypothesis of phase desynchronization can be rejected. The procedure exploits the principle of maximizing the likelihood of detecting phase synchronization epochs and it is grounded on a surrogate data approach testing the null hypothesis of phase uncoupling. The approach was applied to assess cardiorespiratory phase interactions between heartbeat and inspiratory onset in amateur cyclists before and after 11-week inspiratory muscle training (IMT) at different intensities and compared to a more traditional approach to set phase variability threshold. The proposed procedure was able to detect the decrease in cardiorespiratory phase locking strength during vagal withdrawal induced by the modification of posture from supine to standing. IMT had very limited effects on cardiorespiratory phase synchronization strength and this result held regardless of the training intensity. In amateur athletes training, the inspiratory muscles did not limit the decrease in cardiorespiratory phase synchronization observed in the upright position as a likely consequence of the modest impact of this respiratory exercise, regardless of its intensity, on cardiac vagal control. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.


Asunto(s)
Ejercicios Respiratorios , Frecuencia Cardíaca , Humanos
3.
Trials ; 20(1): 258, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064379

RESUMEN

BACKGROUND: Inspiratory muscle training (IMT) has brought great benefits in terms of improving physical performance in healthy individuals. However, there is no consensus regarding the best training load, as in most cases the maximal inspiratory pressure (MIP) is used, mainly the intensity of 60% of MIP. Therefore, prescribing an IMT protocol that takes into account inspiratory muscle strength and endurance may bring additional benefits to the commonly used protocols, since respiratory muscles differ from other muscles because of their greater muscular resistance. Thus, IMT using critical inspiratory pressure (PThC) can be an alternative, as the calculation of PThC considers these characteristics. Therefore, the aim of this study is to propose a new IMT protocol to determine the best training load for recreational cyclists. METHODS: Thirty recreational cyclists (between 20 and 40 years old) will be randomized into three groups: sham (SG), PThC (CPG) and 60% of MIP, according to age and aerobic functional capacity. All participants will undergo the following evaluations: pulmonary function test (PFT), respiratory muscle strength test (RMS), cardiopulmonary exercise test (CPET), incremental inspiratory muscle endurance test (iIME) (maximal sustained respiratory pressure for 1 min (PThMAX)) and constant load test (CLT) (95%, 100% and 105% of PThMÁX) using a linear load inspiratory resistor (PowerBreathe K5). The PThC will be calculated from the inspiratory muscle endurance time (TLIM) and inspiratory loads of each CLT. The IMT will last 11 weeks (3 times/week and 55 min/session). The session will consist of 5-min warm-up (50% of the training load) and three sets of 15-min breaths (100% of the training load), with a 1-min interval between them. RMS, iIME, CLT and CPET will be performed beforehand, at week 5 and 9 (to adjust the training load) and after training. PFT will be performed before and after training. The data will be analyzed using specific statistical tests (parametric or non-parametric) according to the data distribution and their respective variances. A p value <0.05 will be considered statistically significant. DISCUSSIONS: It is expected that the results of this study will enable the training performed with PThC to be used by health professionals as a new tool to evaluate and prescribe IMT. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02984189 . Registered on 6 December 2016.


Asunto(s)
Ciclismo , Ejercicios Respiratorios/métodos , Capacidad Cardiovascular , Inhalación , Contracción Muscular , Músculos Respiratorios/fisiología , Adulto , Método Doble Ciego , Prueba de Esfuerzo , Humanos , Masculino , Fuerza Muscular , Consumo de Oxígeno , Resistencia Física , Presión , Ensayos Clínicos Controlados Aleatorios como Asunto , Pruebas de Función Respiratoria , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
4.
Auton Neurosci ; 208: 29-35, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28916152

RESUMEN

PURPOSE: To carry out a systematic review to determine if inspiratory muscle training (IMT) promotes changes in cardiovascular autonomic responses in humans. METHODS: The methodology followed the PRISMA statement for reporting systematic review analysis. MEDLINE, PEDro, SCOPUS and PubMed electronic databases were searched from the inception to March 2017. The quality assessment was performed using a PEDro scale. The articles were included if: (1) primary objective was related to the effects of IMT on the cardiovascular autonomic nervous system, and (2) randomized clinical trials and quasi-experimental studies. Exclusion criteria were reviews, short communications, letters, case studies, guidelines, theses, dissertations, qualitative studies, scientific conference abstracts, studies on animals, non-English language articles and articles addressing other breathing techniques. Outcomes evaluated were measures of cardiovascular autonomic control, represented by heart rate variability (HRV) and blood pressure variability (BPV) indexes. RESULTS: The search identified 729 citations and a total of 6 studies were included. The results demonstrated that IMT performed at low intensities can chronically promote an increase in the parasympathetic modulation and/or reduction of sympathetic cardiac modulation in patients with diabetes, hypertension, chronic heart failure and gastroesophageal reflux, when assessed by HRV spectral analysis. However, there was no study which evaluated the effects of IMT on cardiovascular autonomic control assessed by BPV. CONCLUSIONS: IMT can promote benefits for cardiac autonomic control, however the heterogeneity of populations associated with different protocols, few studies reported in the literature and the lack of randomized controlled trials make the effects of IMT on cardiovascular autonomic control inconclusive.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Ejercicios Respiratorios , Inhalación/fisiología , Músculos Respiratorios/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA