Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 15(8): e0236689, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32785240

RESUMEN

OBJECTIVE: To compare the effects of photobiomodulation therapy (PBMT) and pharmacological therapy (glucocorticoids and non-steroidal anti-inflammatory drugs) applied alone and in different combinations in mdx mice. METHODS: The animals were randomized and divided into seven experimental groups treated with placebo, PBMT, prednisone, non-steroidal anti-inflammatory drug (NSAIDs), PBMT plus prednisone and PBMT plus NSAID. Wild type animals were used as control. All treatments were performed during 14 consecutive weeks. Muscular morphology, protein expression of dystrophin and functional performance were assessed at the end of the last treatment. RESULTS: Both treatments with prednisone and PBMT applied alone or combined, were effective in preserving muscular morphology. In addition, the treatments with PBMT (p = 0.0005), PBMT plus prednisone (p = 0.0048) and PBMT plus NSAID (p = 0.0021) increased dystrophin gene expression compared to placebo-control group. However, in the functional performance the PBMT presented better results compared to glucocorticoids (p<0.0001). In contrast, the use of NSAIDs did not appear to add benefits to skeletal muscle tissue in mdx mice. CONCLUSION: We believe that the promising and optimistic results about the PBMT in skeletal muscle of mdx mice may in the future contribute to this therapy to be considered a safe alternative for patients with Duchenne Muscular Dystrophy (DMD) in a washout period (between treatment periods with glucocorticoids), allowing them to remain receiving effective and safe treatment in this period, avoiding at this way periods without administration of any treatment.


Asunto(s)
Distrofina/genética , Terapia por Luz de Baja Intensidad , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/efectos de la radiación , Distrofia Muscular de Duchenne/terapia , Animales , Antiinflamatorios no Esteroideos/farmacología , Terapia Combinada , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Glucocorticoides/farmacología , Humanos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Prednisona/farmacología
2.
Artículo en Inglés | MEDLINE | ID: mdl-32308987

RESUMEN

BACKGROUND: Photobiomodulation (PBMT) is a therapy that uses non-ionising forms of light, including low-level lasers and light-emitting diodes (LEDs) that may be capable of modulating cellular activity. Some biological processes may also interact with static magnetic fields (sMF), leading to modulatory effects on cells. Previous studies have verified that the combination of PBMT and sMF (PBMT/sMF) enhances the performance of individuals during aerobic training programs. The detraining period can cause losses in aerobic capacity. However, there is no evidence of the existence of any recourse that can decrease the effects of detraining. We aimed to investigate the effects of PBMT/sMF application during training and detraining to assess the effectiveness of this treatment in reducing the effects of detraining. METHODS: Sixty male volunteers were randomly allocated into four groups- participants who received PBMT/sMF during the training and detraining (PBMT/sMF + PBMT/sMF); participants who received PBMT/sMF during the training and a placebo in the detraining (PBMT/sMF + Placebo); participants who received a placebo during the training and PBMT/sMF in the detraining (Placebo+PBMT/sMF); and participants who received a placebo during the training and detraining (Placebo+Placebo). Participants performed treadmill training over 12 weeks (3 sessions/week), followed by 4 weeks of detraining. PBMT/sMF was applied using a 12-diode emitter (four 905 nm super-pulsed lasers, four 875 nm light-emitting diodes (LEDs), four 640 nm LEDs, and a 35 mT magnetic field) at 17 sites on each lower limb (dosage: 30 J per site). The data were analysed by two-way repeated measures analysis of variance (ANOVA, time vs experimental group) with post-hoc Bonferroni correction. RESULTS: The percentage of change in time until exhaustion and in maximum oxygen consumption was higher in the PBMT/sMF + PBMT/sMF group than in the Placebo+Placebo group at all time-points (p < 0.05). Moreover, the percentage of decrease in body fat at the 16th week was higher in the PBMT/sMF + PBMT/sMF group than in the Placebo+Placebo group (p < 0.05). CONCLUSIONS: PBMT/sMF can potentiate the effects of aerobic endurance training and decrease performance loss after a 4-week detraining period. Thus, it may prove to be an important tool for both amateur and high-performance athletes as well as people undergoing rehabilitation. TRIAL REGISTRATION: NCT03879226. Trial registered on 18 March 2019.

3.
Lasers Med Sci ; 35(6): 1253-1262, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31782023

RESUMEN

Identify the optimal energy delivered with a single application of the combination of photobiomodulation therapy (PBMT) combining different light sources (low-level laser therapy-LLLT and light emitting diode therapy-LEDT) and static magnetic field (sMF) in order to determine the acute effects on functional mobility of stroke survivors. Was conducted a randomized, placebo-controlled, crossover, triple-blind, clinical trial (RCT). Twelve patients were recruited, however ten concluded the study, they were randomly treated with four PBMT/sMF energies (sham-0 J, 10 J, 30 J, and 50 J per site irradiated), with 1-week interval washout between treatments. PBMT/sMF were administered after the pre-intervention (baseline) evaluation and the total energy delivered per site at each treatment was determined based on the results of the randomization procedure. PBMT/sMF were administered in direct contact with the skin and applied with slight pressure to nine sites on the knee extensors, six sites on the knee flexors, and two sites on the plantar flexors' muscles in both lower limbs (bilaterally). The primary outcome measure was the 6-min walk test (6MWT) and the secondary outcome was the Timed Up and Go (TUG) test. Significant improvements were found in the 6MWT test using a total energy of 30 J per site compared with sham (0 J) (p < 0.05) and compared with the baseline evaluation (p < 0.01). And in the TUG test significant improvements were also found using a total energy per site of 30 J per site compared to sham (0 J) and baseline (p < 0.05). PBMT with different light sources (laser and LEDs) and wavelengths in combination with sMF with a total energy per site of 30 J has positive acute effects on functional mobility in stroke survivors.


Asunto(s)
Terapia por Luz de Baja Intensidad , Campos Magnéticos , Movimiento , Sobrevivientes , Estudios Cruzados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/fisiopatología , Prueba de Paso
4.
Oxid Med Cell Longev ; 2019: 6239058, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827687

RESUMEN

The effects of preexercise photobiomodulation therapy (PBMT) to enhance performance, accelerate recovery, and attenuate exercise-induced oxidative stress were still not fully investigated, especially in high-level athletes. The aim of this study was to evaluate the effects of PBMT (using infrared low-level laser therapy) applied before a progressive running test on functional aspects, muscle damage, and inflammatory and oxidative stress markers in high-level soccer players. A randomized, triple-blind, placebo-controlled crossover trial was performed. Twenty-two high-level male soccer players from the same team were recruited and treated with active PBMT and placebo. The order of interventions was randomized. Immediately after the application of active PBMT or placebo, the volunteers performed a standardized high-intensity progressive running test (ergospirometry test) until exhaustion. We analyzed rates of oxygen uptake (VO2 max), time until exhaustion, and aerobic and anaerobic threshold during the intense progressive running test. Creatine kinase (CK) and lactate dehydrogenase (LDH) activities, levels of interleukin-1ß (IL-1-ß), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), levels of thiobarbituric acid (TBARS) and carbonylated proteins, and catalase (CAT) and superoxide dismutase (SOD) activities were measured before and five minutes after the end of the test. PBMT increased the VO2 max (both relative and absolute values-p < 0.0467 and p < 0.0013, respectively), time until exhaustion (p < 0.0043), time (p < 0.0007) and volume (p < 0.0355) in which anaerobic threshold happened, and volume in which aerobic threshold happened (p < 0.0068). Moreover, PBMT decreased CK (p < 0.0001) and LDH (p < 0.0001) activities. Regarding the cytokines, PBMT decreased only IL-6 (p < 0.0001). Finally, PBMT decreased TBARS (p < 0.0001) and carbonylated protein levels (p < 0.01) and increased SOD (p < 0.0001)and CAT (p < 0.0001) activities. The findings of this study demonstrate that preexercise PBMT acts on different functional aspects and biochemical markers. Moreover, preexercise PBMT seems to play an important antioxidant effect, decreasing exercise-induced oxidative stress and consequently enhancing athletic performance and improving postexercise recovery. This trial is registered with Clinicaltrials.gov NCT03803956.


Asunto(s)
Atletas/estadística & datos numéricos , Ejercicio Físico , Inflamación/prevención & control , Terapia por Luz de Baja Intensidad/métodos , Fatiga Muscular/fisiología , Estrés Oxidativo/efectos de la radiación , Carrera , Adolescente , Adulto , Biomarcadores/análisis , Estudios Cruzados , Humanos , Inflamación/metabolismo , Masculino , Fatiga Muscular/efectos de la radiación , Oxidación-Reducción , Fútbol , Adulto Joven
5.
BMJ Open ; 9(10): e030194, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31662370

RESUMEN

INTRODUCTION: In recent years, it has been demonstrated that photobiomodulation therapy (PBMT) using low-level laser therapy and/or light-emitting diode therapy combined to static magnetic field (sMF) has ergogenic effects, improving muscular performance and accelerating postexercise recovery. However, many aspects related to these effects and its clinical applicability remain unknown. Therefore, the aim of this project is to evaluate the ergogenic effects of PBMT/sMF in detraining after a strength-training protocol. METHODS AND ANALYSIS: The study will be a randomised, triple-blind, placebo-controlled clinical trial. Healthy male volunteers will be randomly distributed into four experimental groups: PBMT/sMF before training sessions + PBMT/sMF during detraining, PBMT/sMF before training sessions + placebo during detraining, placebo before training sessions + PBMT/sMF during detraining and placebo before training sessions + placebo during detraining. Strength-training sessions will be carried out over 12 weeks, and the detraining period will occur during the 4 weeks after. The muscular strength and the structural properties of quadriceps will be analysed. ETHICS AND DISSEMINATION: This study was approved by the Research Ethics Committee of Nove de Julho University. The results from this study will be disseminated through scientific publications in international peer-reviewed journals and presented at national and international scientific meetings. TRIAL REGISTRATION NUMBER: NCT03858179.


Asunto(s)
Terapia por Luz de Baja Intensidad/métodos , Magnetoterapia/métodos , Fuerza Muscular , Músculo Cuádriceps , Entrenamiento de Fuerza/métodos , Adulto , Humanos , Campos Magnéticos , Masculino , Adulto Joven
6.
Sci Rep ; 9(1): 9425, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31263132

RESUMEN

The post-myocardial infarction heart failure (HF) still carries a huge burden since current therapy is unsuccessful to abrogate poor prognosis. Thus, new approaches are needed, and photobiomodulation therapy (PBMt) may be a way. However, it is not known whether PBMt added to a standard HF therapy provides additional improvement in cardiac remodeling in infarcted rats. This study sought to determine the combined carvedilol-drug and PBMt with low-level laser therapy value in HF. Rats with large infarcts were treated for 30 days. The functional fitness was evaluated using a motorized treadmill. Echocardiography and hemodynamic measurements were used for functional evaluations of left ventricular (LV). ELISA, Western blot and biochemical assays were used to evaluate inflammation and oxidative stress in the myocardium. Carvedilol and PBMt had a similar action in normalizing pulmonary congestion and LV end-diastolic pressure, attenuating LV dilation, and improving LV systolic function. Moreover, the application of PBMt to carvedilol-treated rats inhibited myocardial hypertrophy and improved +dP/dt of LV. PBMt alone prevented inflammation with a superior effect than carvedilol. Carvedilol and PBMt normalized 4-hydroxynonenal (a lipoperoxidation marker) levels in the myocardium. However, importantly, the addition of PBMt to carvedilol attenuated oxidized protein content and triggered a high activity of the anti-oxidant catalase enzyme. In conclusion, these data show that the use of PBMt plus carvedilol therapy results in a significant additional improvement in HF in a rat model of myocardial infarction. These beneficial effects were observed to be due, at least in part, to decreased myocardial inflammation and oxidative stress.


Asunto(s)
Carvedilol/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Terapia por Luz de Baja Intensidad , Estrés Oxidativo , Animales , Carvedilol/farmacología , Catalasa/metabolismo , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/radioterapia , Hemodinámica/efectos de los fármacos , Inflamación/prevención & control , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Función Ventricular Izquierda/fisiología
7.
Medicine (Baltimore) ; 98(18): e15317, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31045769

RESUMEN

INTRODUCTION: Over the last 10 years, it has been demonstrated that photobiomodulation therapy (PBMT), also known as phototherapy, using low-level laser therapy (LLLT) and/or light-emitting diode therapy (LEDT) has ergogenic effects, improving athletic performance and also accelerating post-exercise recovery. However, many aspects related to these effects and its clinical applicability remain unknown. Therefore, the aim of this project is to evaluate the ergogenic effects of PBMT in detraining after an aerobic endurance training protocol. METHODS AND ANALYZES: A randomized, triple-blind, placebo-controlled clinical trial will be carried out. Healthy male volunteers will be randomly distributed into 4 experimental groups: PBMT before and after training sessions + PBMT during detraining, PBMT before and after training sessions + placebo during detraining, placebo before and after training sessions + PBMT during detraining, and placebo before and after training sessions + placebo during detraining. The aerobic endurance training sessions will be carried out using motorized treadmills during 12 weeks, and the detraining period will consist in the next 4 weeks after that. It will be analyzed the time until exhaustion, maximal oxygen uptake (VO2max), and fat percentage of volunteers. DISCUSSION: Despite the increasing body of evidence for the use of PBMT as an ergogenic agent, several aspects remain unknown. The findings of this study will contribute to the advance of knowledge in this field regarding clinical applications. ETHICS AND DISSEMINATION: This study was approved by the Research Ethics Committee of Nove de Julho University. The results from this study will be further disseminated through scientific publications in international peer-reviewed journals and presentations at national and international scientific meetings. TRIAL REGISTRATION NUMBER: NCT03879226.


Asunto(s)
Rendimiento Atlético/estadística & datos numéricos , Entrenamiento Aeróbico/métodos , Terapia por Luz de Baja Intensidad/efectos adversos , Sustancias para Mejorar el Rendimiento/efectos adversos , Adolescente , Adulto , Rendimiento Atlético/fisiología , Distribución de la Grasa Corporal/estadística & datos numéricos , Prueba de Esfuerzo/métodos , Humanos , Terapia por Luz de Baja Intensidad/métodos , Masculino , Consumo de Oxígeno/fisiología , Placebos , Adulto Joven
8.
Photobiomodul Photomed Laser Surg ; 37(6): 327-335, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31107161

RESUMEN

Objective: This systematic review and meta-analysis updated the effects of photobiomodulation therapy (PBMT) on pain, the Foot Function Index (FFI), and the effects on fascial thickness in adults with acute or chronic plantar fasciitis (PF). Methods: A systematic literature search was conducted in the PubMed (Public/Publisher MEDLINE), EMBASE (Excerpta Medica Database), and CINAHL (Cumulative Index to Nursing and Allied Health Literature) databases. Two researchers independently screened titles and abstracts of the retrieved studies for eligibility. A random-effects model was used for this meta-analysis. Subgroup meta-analyses were conducted to evaluate the influence of PBMT in pain and foot function under investigation and the study design on the overall weighted mean effect size. Results: From a total of 3865 studies, 7 randomized controlled trials were selected after final review and 4 were selected for meta-analysis. There was a significant difference between PBMT and control for Visual Analog Scale (Chi2 = 29.30; p < 0.00001) with an I2 value of 90% in favor of PBMT versus the control. The overall effect of PBMT was statistically significant (p < 0.02) with PBMT favoring for thickness of the plantar fascia reduction. FFI between PBMT and control group [Chi2 -83.46, df = 1 (p < 0.00001)]; I2 = 99% in favor of the PBMT. Conclusions: This meta-analysis presents evidence that PBMT is an effective treatment modality to reduce pain and improvement of foot function in patients with chronic PF, however, a broad discrepancy was found in the PBMT dosimetry. The ideal treatment parameters for PF need to be elucidated.


Asunto(s)
Fascitis Plantar/radioterapia , Terapia por Luz de Baja Intensidad/métodos , Humanos
9.
Lasers Med Sci ; 34(4): 711-719, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30255449

RESUMEN

Chronic obstructive pulmonary disease (COPD) is characterized by dyspnea, as well as musculoskeletal and systemic manifestations. Photobiomodulation therapy (PBMT) with use of low-level laser therapy (LLLT) and/or light-emitting diode therapy (LEDT) is an electrophysical intervention that has been found to minimize or delay muscle fatigue. The aim of this study was to evaluate the acute effect of PBMT with combined use of lasers diodes, light-emitting diodes (LEDs), magnetic field on muscle performance, exercise tolerance, and metabolic variables during the 6-minute stepper test (6MST) in patients with COPD. Twenty-one patients with COPD (FEV1 46.3% predicted) completed the 6MST protocol over 2 weeks, with one session per week. PBMT/magnetic field or placebo (PL) was performed before each 6MST (17 sites on each lower limb, with a dose of 30 J per site, using a cluster of 12 diodes 4 × 905 nm super-pulsed laser diodes, 4 × 875 nm infrared LEDs, and 4 × 640 nm red LEDs; Multi Radiance Medical™, Solon, OH, USA). Patients were randomized into two groups before the test according to the treatment they would receive. Assessments were performed before the start of each protocol. The primary outcomes were oxygen uptake and number of steps, and the secondary outcome was perceived exertion (dyspnea and fatigue in the lower limbs). PBMT/magnetic field applied before 6MST significantly increased the number of steps during the cardiopulmonary exercise test when compared to the results with placebo (129.8 ± 10.6 vs 116.1 ± 11.5, p = 0.000). PBMT/magnetic field treatment also led to a lower score for the perception of breathlessness (3.0 [1.0-7.0] vs 4.0 [2.0-8.0], p = 0.000) and lower limb fatigue (2.0 [0.0-5.0] vs 4.0 [0.0-7.0], p = 0.001) compared to that with placebo treatment. This study showed that the combined application of PBMT and magnetic field increased the number of steps during the 6MST and decreased the sensation of dyspnea and lower limb fatigue in patients with COPD.


Asunto(s)
Prueba de Esfuerzo , Ejercicio Físico/fisiología , Láseres de Semiconductores/uso terapéutico , Terapia por Luz de Baja Intensidad , Campos Magnéticos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/radioterapia , Adulto , Estudios Cruzados , Femenino , Humanos , Rodilla/fisiopatología , Rodilla/efectos de la radiación , Masculino , Persona de Mediana Edad
10.
Lasers Med Sci ; 34(3): 637-648, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30229346

RESUMEN

This systematic review was performed to identify the role of photobiomodulation therapy in experimental models of third-degree burns used to induce oxidative stress. EMBASE, PubMed, and CINAHL databases were searched for studies published between January 2003 and January 2018 on the topics of photobiomodulation therapy and third-degree burns. Any study that assessed the effects of photobiomodulation therapy in animal models of third-degree burns was included in the analysis. A total of 17 studies were selected from 1182 original articles targeted on photobiomodulation therapy and third-degree burns. Two independent raters with a structured tool for rating the research quality critically assessed the articles. Although the small number of studies limits the conclusions, the current literature research indicates that photobiomodulation therapy can be an effective short-term approach to accelerate the healing process of third-degree burns, to increase and modulate the inflammatory process, to accelerate the proliferation of fibroblasts, and to enhance the quality of the collagen network. However, differences still exist in the terminology used to describe the parameters and the dose of photobiomodulation therapy.


Asunto(s)
Quemaduras/radioterapia , Terapia por Luz de Baja Intensidad , Animales , Modelos Animales de Enfermedad , Factor de Impacto de la Revista , Sesgo de Publicación , Factores de Riesgo
11.
Lasers Med Sci ; 33(9): 1933-1940, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29909435

RESUMEN

When conservative treatments fail, hip osteoarthritis (OA), a chronic degenerative disease characterized by cartilage wear, progressive joint deformity, and loss of function, can result in the need for a total hip arthroplasty (THA). Surgical procedures induced tissue trauma and incite an immune response. Photobiomodulation therapy (PBMt) using low-level laser therapy (LLLT) and/or light-emitting diode therapy (LEDT) has proven effective in tissue repair by modulating the inflammatory process and promoting pain relief. Therefore, the aim of this study was to analyze the immediate effect of PBMt on inflammation and pain of patients undergoing total hip arthroplasty. The study consisted of 18 post-surgical hip arthroplasty patients divided into two groups (n = 9 each) placebo and active PBMt who received one of the treatments in a period from 8 to 12 h following THA surgery. PBMt (active or placebo) was applied using a device consisting of nine diodes (one super-pulsed laser of 905 nm, four infrared LEDs of 875 nm, and four red LEDs 640 nm, 40.3 J per point) applied to 5 points along the incision. Visual analog scale (VAS) and blood samples for analysis of the levels of the cytokines TNF-α, IL-6, and IL-8 were recorded before and after PBMt application. The values for the visual analog scale as well as those in the analysis of TNF-α and IL-8 serum levels decreased in the active PBMt group compared to placebo-control group (p < 0.05). No decrease was observed for IL-6 levels. We conclude that PBMt is effective in decreasing pain intensity and post-surgery inflammation in patients receiving total hip arthroplasty.


Asunto(s)
Dolor Agudo/radioterapia , Artroplastia de Reemplazo de Cadera/efectos adversos , Inflamación/radioterapia , Terapia por Luz de Baja Intensidad , Anciano , Femenino , Humanos , Interleucina-6/metabolismo , Masculino , Dimensión del Dolor , Placebos , Factor de Necrosis Tumoral alfa/metabolismo
12.
Lasers Med Sci ; 33(8): 1781-1790, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29808322

RESUMEN

This study aimed to determine whether photobiomodulation therapy (PBMT) in diabetic rats subjected to high-intensity exercise interferes with the expression of the oxidative stress marker in the gastrocnemius muscle. Twenty-four male Wistar rats were included in this study comprising 16 diabetic and eight control rats. The animals were allocated into three groups-control, diabetic fatigue, and diabetic PBMT fatigue groups. Diabetes was induced via the intraperitoneal administration of streptozotocin (50 mg/kg). We subsequently assessed blood lactate levels and PBMT. The animals of the diabetic fatigue group PBMT were irradiated before the beginning of the exercises, with dose of 4 J and 808 nm, were submitted to treadmill running with speed and gradual slope until exhaustion, as observed by the maximum volume of oxygen and lactate level. The animals were euthanized and muscle tissue was removed for analysis of SOD markers, including catalase (CAT), glutathione peroxidase (GPx), and 2-thiobarbituric acid (TBARS) reactive substances. CAT, SOD, and GPx activities were significantly higher in the diabetic PBMT fatigue group (p < 0.05) than in the diabetic fatigue group. Outcomes for the diabetic PBMT fatigue group were similar to those of the control group (p > 0.05), while their antioxidant enzymes were significantly higher than those of the diabetic fatigue group. PBMT mitigated the TBARS concentration (p > 0.05). PBMT may reduce oxidative stress and be an alternative method of maintaining physical fitness when subjects are unable to perform exercise. However, this finding requires further testing in clinical studies.


Asunto(s)
Biomarcadores/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/radioterapia , Terapia por Luz de Baja Intensidad/métodos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Estrés Oxidativo , Condicionamiento Físico Animal , Animales , Catalasa/metabolismo , Diabetes Mellitus Experimental/sangre , Glutatión Peroxidasa/metabolismo , Ácido Láctico/sangre , Masculino , Oxidación-Reducción , Ratas Wistar , Carrera , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
13.
Oxid Med Cell Longev ; 2018: 5763256, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29636849

RESUMEN

The aim of this study was to determine whether oxidative stress markers are influenced by low-intensity laser therapy (LLLT) in rats subjected to a high-intensity resistive exercise session (RE). Female Wistar rats divided into three experimental groups (Ctr: control, 4J: LLLT, and RE) and subdivided based on the sampling times (instantly or 24 h postexercise) underwent irradiation with LLLT using three-point transcutaneous method on the hind legs, which was applied to the gastrocnemius muscle at the distal, medial, and proximal points. Laser (4J) or placebo (device off) were carried out 60 sec prior to RE that consisted of four climbs bearing the maximum load with a 2 min time interval between each climb. Lipoperoxidation levels and antioxidant capacity were obtained in muscle. Lipoperoxidation levels were increased (4-HNE and CL markers) instantly post-RE. LLLT prior to RE avoided the increase of the lipid peroxidation levels. Similar results were also notified for oxidation protein assays. The GPx and FRAP activities did not reduce instantly or 24 h after RE. SOD increased 24 h after RE, while CAT activity did not change with RE or LLLT. In conclusion, LLLT prior to RE reduced the oxidative stress markers, as well as, avoided reduction, and still increased the antioxidant capacity.


Asunto(s)
Terapia por Luz de Baja Intensidad , Estrés Oxidativo/efectos de la radiación , Condicionamiento Físico Animal , Animales , Femenino , Peroxidación de Lípido/efectos de la radiación , Músculos/enzimología , Músculos/patología , Músculos/efectos de la radiación , Ratas Wistar
14.
J Sports Sci ; 36(20): 2349-2357, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29578836

RESUMEN

We investigated whether low-level laser therapy (LLLT) prior to or post resistance exercise could attenuate muscle damage and inflammation. Female Wistar rats were assigned to non-LLLT or LLLT groups. An 830-nm DMC Laser Photon III was used to irradiate their hind legs with 2J, 4J, and 8J doses. Irradiations were performed prior to or post (4J) resistance exercise bouts. Resistance exercise consisted of four maximum load climbs. The load work during a resistance exercise bout was similar between Control (non-LLLT, 225 ± 10 g), 2J (215 ± 8 g), 4J (210 ± 9 g), and 8J (226 ± 9 g) groups. Prior LLLT did not induce climbing performance improvement, but exposure to 4J irradiation resulted in lower blood lactate levels post-exercise. The 4J dose decreased creatine kinase and lactic dehydrogenase levels post-exercise regardless of the time of application. Moreover, 4-J irradiation exposure significantly attenuated tumor necrosis factor alpha, interleukin-6, interleukin-1ß, cytokine-induced neutrophil chemoattractant-1, and monocyte chemoattractant protein-1. There was minor macrophage muscle infiltration in 4J-exposed rats. These data indicate that LLLT prior to or post resistance exercise can reduce muscle damage and inflammation, resulting in muscle recovery improvement. We attempted to determine an ideal LLLT dose for suitable results, wherein 4J irradiation exposure showed a significant protective role.


Asunto(s)
Terapia por Luz de Baja Intensidad , Músculo Esquelético/lesiones , Músculo Esquelético/efectos de la radiación , Condicionamiento Físico Animal/efectos adversos , Entrenamiento de Fuerza/efectos adversos , Animales , Biomarcadores/sangre , Creatina Quinasa/sangre , Citocinas/sangre , Femenino , Inflamación/prevención & control , L-Lactato Deshidrogenasa/sangre , Ácido Láctico/sangre , Activación de Macrófagos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Condicionamiento Físico Animal/métodos , Ratas Wistar
15.
Lasers Med Sci ; 33(4): 755-764, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29209866

RESUMEN

This study aimed to analyze the protective effects of photobiomodulation therapy (PBMT) with combination of low-level laser therapy (LLLT) and light emitting diode therapy (LEDT) on skeletal muscle tissue to delay dystrophy progression in mdx mice (DMD mdx ). To this aim, mice were randomly divided into five different experimental groups: wild type (WT), placebo-control (DMD mdx ), PBMT with doses of 1 J (DMD mdx ), 3 J (DMD mdx ), and 10 J (DMD mdx ). PBMT was performed employing a cluster probe with 9 diodes (1 x 905nm super-pulsed laser diode; 4 x 875nm infrared LEDs; and 4 x 640nm red LEDs, manufactured by Multi Radiance Medical®, Solon - OH, USA), 3 times a week for 14 weeks. PBMT was applied on a single point (tibialis anterior muscle-bilaterally). We analyzed functional performance, muscle morphology, and gene and protein expression of dystrophin. PBMT with a 10 J dose significantly improved (p < 0.001) functional performance compared to all other experimental groups. Muscle morphology was improved by all PBMT doses, with better outcomes with the 3 and 10 J doses. Gene expression of dystrophin was significantly increased with 3 J (p < 0.01) and 10 J (p < 0.01) doses when compared to placebo-control group. Regarding protein expression of dystrophin, 3 J (p < 0.001) and 10 J (p < 0.05) doses also significantly showed increase compared to placebo-control group. We conclude that PBMT can mainly preserve muscle morphology and improve muscular function of mdx mice through modulation of gene and protein expression of dystrophin. Furthermore, since PBMT is a non-pharmacological treatment which does not present side effects and is easy to handle, it can be seen as a promising tool for treating Duchenne's muscular dystrophy.


Asunto(s)
Distrofina/metabolismo , Terapia por Luz de Baja Intensidad/métodos , Músculo Esquelético/fisiopatología , Músculo Esquelético/efectos de la radiación , Distrofia Muscular de Duchenne/fisiopatología , Distrofia Muscular de Duchenne/radioterapia , Animales , Relación Dosis-Respuesta en la Radiación , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Placebos , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Photomed Laser Surg ; 35(11): 595-603, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29099680

RESUMEN

BACKGROUND: Photobiomodulation therapy (PBMT) has recently been used to alleviate postexercise muscle fatigue and enhance recovery, demonstrating positive results. A previous study by our research group demonstrated the optimal dose for an infrared wavelength (810 nm), but the outcomes could be optimized further with the determination of the optimal output power. OBJECTIVE: The aim of the present study was to evaluate the effects of PBMT (through low-level laser therapy) on postexercise skeletal muscle recovery and identify the best output power. MATERIALS AND METHODS: A randomized, placebo-controlled double-blind clinical trial was conducted with the participation of 28 high-level soccer players. PBMT was applied before the eccentric contraction protocol with a cluster with five diodes, 810 nm, dose of 10 J, and output power of 100, 200, 400 mW per diode or placebo at six sites of knee extensors. Maximum isometric voluntary contraction (MIVC), delayed onset muscle soreness (DOMS) and biochemical markers related to muscle damage (creatine kinase and lactate dehydrogenase), inflammation (IL-1ß, IL-6, and TNF-α), and oxidative stress (catalase, superoxide dismutase, carbonylated proteins, and thiobarbituric acid) were evaluated before isokinetic exercise, as well as at 1 min and at 1, 24, 48, 72, and 96 h, after the eccentric contraction protocol. RESULTS: PBMT increased MIVC and decreased DOMS and levels of biochemical markers (p < 0.05) with the power output of 100 and 200 mW, with better results for the power output of 100 mW. CONCLUSIONS: PBMT with 100 mW power output per diode (500 mW total) before exercise achieves best outcomes in enhancing muscular performance and postexercise recovery. Another time it has been demonstrated that more power output is not necessarily better.


Asunto(s)
Ejercicio Físico/fisiología , Terapia por Luz de Baja Intensidad/métodos , Fatiga Muscular/fisiología , Fatiga Muscular/efectos de la radiación , Músculo Esquelético/fisiología , Músculo Esquelético/efectos de la radiación , Recuperación de la Función/fisiología , Recuperación de la Función/efectos de la radiación , Fútbol/fisiología , Adolescente , Adulto , Biomarcadores/sangre , Método Doble Ciego , Humanos , Masculino
17.
Oxid Med Cell Longev ; 2017: 5273403, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29075364

RESUMEN

This systematic review was performed to identify the role of photobiomodulation therapy on experimental muscle injury models linked to induce oxidative stress. EMBASE, PubMed, and CINAHL were searched for studies published from January 2006 to January 2016 in the areas of laser and oxidative stress. Any animal model using photobiomodulation therapy to modulate oxidative stress was included in analysis. Eight studies were selected from 68 original articles targeted on laser irradiation and oxidative stress. Articles were critically assessed by two independent raters with a structured tool for rating the research quality. Although the small number of studies limits conclusions, the current literature indicates that photobiomodulation therapy can be an effective short-term approach to reduce oxidative stress markers (e.g., thiobarbituric acid-reactive) and to increase antioxidant substances (e.g., catalase, glutathione peroxidase, and superoxide dismutase). However, there is a nonuniformity in the terminology used to describe the parameters and dose for low-level laser treatment.


Asunto(s)
Terapia por Luz de Baja Intensidad/métodos , Enfermedades Musculares/terapia , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Estrés Oxidativo , Ratas , Ratas Wistar
18.
J Exp Ther Oncol ; 11(2): 85-89, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28976129

RESUMEN

BACKGROUND: Laser therapy influences oxidative stress parameters such as the activity of antioxidant enzymes and the production of reactive oxygen species. OBJECTIVE: To analyze the effects of low-level laser therapy on oxidative stress in diabetics rats with skin wounds. METHODS: Thirty-six animals were divided into 4 groups: NDNI: non-diabetic rats with cutaneous wounds that not received laser therapy; NDI: non-diabetic rats with cutaneous wounds that received laser therapy; DNI: diabetic rats with skin wounds who did not undergo laser therapy; DI: rats with diabetes insipidus and cutaneous wounds and received laser therapy. The animals were treated with LLLT (660 nm, 100 mW, 6 J/cm, spot size 0.028 cm). On the day of killing the animals, tissue-wrapped cutaneous wounds were collected and immediately frozen, centrifuged, and stored to analyze malondialdehyde (MDA) levels. RESULTS: Significant difference was observed within the groups of MDA levels (ANOVA, p = 0.0001). Tukey's post-hoc test showed significantly lower values of MDA in irradiated tissues, both in diabetic and non-diabetic rats. ANOVA of the diabetic group revealed a significant difference (p &#60; 0.01) when all groups, except NDI and DI, were compared. CONCLUSIONS: LLLT was effective in decreasing MDA levels in acute surgical wounds in diabetic rats.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Terapia por Luz de Baja Intensidad , Estrés Oxidativo/efectos de la radiación , Piel/efectos de la radiación , Heridas y Lesiones/metabolismo , Animales , Masculino , Malondialdehído/metabolismo , Malondialdehído/efectos de la radiación , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/efectos de la radiación , Piel/metabolismo
19.
Lasers Med Sci ; 32(9): 2111-2120, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28983756

RESUMEN

Musculoskeletal injuries are very frequent and are responsible for causing pain and impairment of muscle function, as well as significant functional limitations. In the acute phase, the most prescribed treatment is with non-steroidal anti-inflammatory drugs (NSAIDs), despite their questionable effectiveness. However, the use of photobiomodulation therapy (PBMT) in musculoskeletal disorders has been increasing in the last few years, and this therapy appears to be an interesting alternative to the traditional drugs. The objective of the present study was to evaluate and compare the effects of PBMT, with different application doses, and topical NSAIDs, under morphological and functional parameters, during an acute inflammatory process triggered by a controlled model of musculoskeletal injury induced via contusion in rats. Muscle injury was induced by means of a single trauma to the animals' anterior tibialis muscle. After 1 h, the rats were treated with PBMT (830 nm; continuous mode, with a power output of 100 mW; 3.57 W/cm2; 1 J-35.7 J/cm2, 3 J-107.1 J/cm2, and 9 J-321.4 J/cm2; 10, 30, and 90 s) or diclofenac sodium for topical use (1 g). Morphological analysis (histology) and functional analysis (muscle work) were performed, 6, 12, and 24 h after induction of the injury. PBMT, with all doses tested, improved morphological changes caused by trauma; however, the 9 J (321.4 J/cm2) dose was the most effective in organizing muscle fibers and cell nuclei. On the other hand, the use of diclofenac sodium produced only a slight improvement in morphological changes. Moreover, we observed a statistically significant increase of muscle work in the PBMT 3 J (107.1 J/cm2) group in relation to the injury group and the diclofenac group (p < 0.05). The results of the present study indicate that PBMT, with a dose of 3 J (107.1 J/cm2), is more effective than the other doses of PBMT tested and NSAIDs for topical use as a means to improve morphological and functional alterations due to muscle injury from contusion.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Contusiones/complicaciones , Terapia por Luz de Baja Intensidad/métodos , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Administración Tópica , Animales , Diclofenaco/farmacología , Masculino , Músculo Esquelético/fisiopatología , Músculo Esquelético/efectos de la radiación , Ratas Wistar
20.
Lasers Med Sci ; 32(8): 1879-1887, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28795275

RESUMEN

Muscle injuries trigger an inflammatory process, releasing important biochemical markers for tissue regeneration. The use of non-steroidal anti-inflammatory drugs (NSAIDs) is the treatment of choice to promote pain relief due to muscle injury. NSAIDs exhibit several adverse effects and their efficacy is questionable. Photobiomodulation therapy (PBMT) has been demonstrated to effectively modulate inflammation induced from musculoskeletal disorders and may be used as an alternative to NSAIDs. Here, we assessed and compared the effects of different doses of PBMT and topical NSAIDs on biochemical parameters during an acute inflammatory process triggered by a controlled model of contusion-induced musculoskeletal injury in rats. Muscle injury was induced by trauma to the anterior tibial muscle of rats. After 1 h, rats were treated with PBMT (830 nm, continuous mode, 100 mW of power, 35.71 W/cm2; 1, 3, and 9 J; 10, 30, and 90 s) or diclofenac sodium (1 g). Our results demonstrated that PBMT, 1 J (35.7 J/cm2), 3 J (107.1 J/cm2), and 9 J (321.4 J/cm2) reduced the expression of tumor necrosis factor alpha (TNF-α) and cyclooxygenase-2 (COX-2) genes at all assessed times as compared to the injury and diclofenac groups (p < 0.05). The diclofenac group showed reduced levels of COX-2 only in relation to the injury group (p < 0.05). COX-2 protein expression remained unchanged with all therapies except with PBMT at a 3-J dose at 12 h (p < 0.05 compared to the injury group). In addition, PBMT (1, 3, and 9 J) effectively reduced levels of cytokines TNF-α, interleukin (IL)-1ß, and IL-6 at all assessed times as compared to the injury and diclofenac groups (p < 0.05). Thus, PBMT at a 3-J dose was more effective than other doses of PBMT and topical NSAIDs in the modulation of the inflammatory process caused by muscle contusion injuries.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Contusiones/tratamiento farmacológico , Contusiones/radioterapia , Terapia por Luz de Baja Intensidad/métodos , Músculo Esquelético/lesiones , Administración Tópica , Animales , Antiinflamatorios no Esteroideos/farmacología , Biomarcadores/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Diclofenaco/farmacología , Diclofenaco/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/efectos de la radiación , Ratas Wistar , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA