Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Toxicol Environ Health A ; 86(4): 87-102, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36756732

RESUMEN

The aim of this study was to determine the oxidative/antioxidative effects, modulatory and selective potential of α-tocopherol (vitamin E) on antineoplastic drug-induced toxicogenetic damage. The toxicity, cytotoxicity and genotoxicity induced by antineoplastic agents cyclophosphamide (CPA) and doxorubicin (DOX) was examined utilizing as models Saccharomyces cerevisiae, Allium cepa, Artemia salina and human peripheral blood mononuclear cells (PBMCs) in the presence of α-tocopherol. For these tests, concentrations of α- tocopherol 100 IU/ml (67mg/ml), CPA 20 µg/ml, DOX 2 µg/ml were used. The selectivity of α-tocopherol was assessed by the MTT test using human mammary gland non-tumor (MCF10A) and tumor (MCF-7) cell lines. Data showed cytoplasmic and mitochondrial oxidative damage induced by CPA or DOX was significantly diminished by α-tocopherol in S. cerevisiae. In addition, the toxic effects on A. salina and cytotoxic and mutagenic effects on A. cepa were significantly reduced by α-tocopherol. In PBMCs, α-tocopherol alone did not markedly affect these cells, and when treated in conjunction with CPA or DOX, α-tocopherol reduced the toxicogenetic effects noted after antineoplastic drug administration as evidenced by decreased chromosomal alterations and lowered cell death rate. In human mammary gland non-tumor and tumor cell lines, α-tocopherol produced selective cytotoxicity with 2-fold higher effect in tumor cells. Evidence indicates that vitamin E (1) produced anti-cytotoxic and anti-mutagenic effects against CPA and DOX (2) increased higher selectivity toward tumor cells, and (3) presented chemoprotective activity in PBMCs.


Asunto(s)
Antineoplásicos , alfa-Tocoferol , Humanos , alfa-Tocoferol/farmacología , Saccharomyces cerevisiae , Leucocitos Mononucleares , Antineoplásicos/toxicidad , Antineoplásicos/uso terapéutico , Doxorrubicina/toxicidad , Ciclofosfamida/toxicidad , Vitamina E
2.
Biomed Pharmacother ; 126: 110004, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32145583

RESUMEN

BACKGROUND: [6]-Gingerol [(S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone] is a phenolic substance reported for several ethnopharmacological usage by virtue of its antioxidant, antiemetic, anti-inflammatory and anticancer properties. This study assessed the antitumoral effects of [6]-Gingerol in primary cells of Sarcoma 180 as well as in peripheral blood lymphocytes of mice. METHODS: The effect of [6]-Gingerol was assessed by applying cytogenetic biomarkers as indicative of genotoxicity, mutagenicity and apoptosis. Ascitic liquid cells were treated with [6]-Gingerol at concentrations of 21.33, 42.66 and 85.33 µM and subjected to the cytotoxicity assays using Trypan blue test and the comet assay, as well as the cytokinesis-block micronucleus assay. Doxorubicin (6 µM) and hydrogen peroxide (85.33 µM) were used as positive controls. RESULTS: [6]-Gingerol, especially at concentrations of 42.66 and 85.33 µM, showed notable cytotoxicity in Sarcoma 180 cells by reducing cell viability and cell division rates via induction of apoptosis. Genotoxicity at the concentrations used was punctuated by the increase in the index and frequency of DNA damage in tested groups. [6]-Gingerol, at all concentrations tested, did not induce significant aneugenic and/or clastogenic effects. It did, however, induced other nuclear abnormalities, such as nucleoplasmic bridges, nuclear buds and apoptosis. The genotoxic effects observed in the cotreatment with H2O2 (challenge assay) employing neoplastic and healthy cells, indicated that [6]-Gingerol may induce oxidative stress. CONCLUSIONS: Observations suggest that [6]-Gingerol may be a candidate for pharmaceutical antitumoral formulations due to its cytotoxicity and to mechanisms associated with genetic instability generated by nuclear alterations especially by apoptosis.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Catecoles/farmacología , Alcoholes Grasos/farmacología , Sarcoma/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ratones
3.
Phytother Res ; 33(8): 2126-2138, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31240792

RESUMEN

Depression, a multifactorial neuronal disorder with high morbidity/mortality, is associated with psychological, psychosocial, hereditary, and environmental etiologies, where reactive species exert pathophysiological functions. Anacardic acid (AA), a natural compound obtained from cashew nut liquid, has several pharmacological activities, including antioxidant and anticonvulsant. The aim of the present study was to evaluate the antidepressant-like effect of AA and the involvement of serotonergic, noradrenergic, and L-arginine-nitric oxide (NO) in tail suspension and forced swim tests and, more so, to investigate its antioxidant effect in Saccharomyces cerevisiae and in male Swiss mice (n = 8). In order to identify the antidepressant mechanisms, AA (10, 25, or 50 mg/kg, p.o.) was given 30 min before clonidine (2-adrenergic receptor agonist), L-arginine (NO precursor), propranolol (ß-adrenergic receptor antagonist), and several other agonists or antagonists used. On the other hand, clonidine, noradrenoreceptor, noradrenaline, and L-arginine were used to identify the antidepressant mechanisms. Results suggest that AA exerts antidepressant-like activity, especially at higher doses, possibly by inhibiting serotonin and 5HT-1A reuptake receptors and by inhibiting NO synthetase and guanylyl cyclase enzymes. Additionally, AA exhibited antioxidant effect in S. cerevisiae. This antioxidant capacity may be linked to its antidepressant-like effect but does not interact with α- and ß-adrenoceptor receptors. In conclusion, AA may be used as a promising agent to treat depression, especially which arises from oxidative stress.


Asunto(s)
Ácidos Anacárdicos/uso terapéutico , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Ácidos Anacárdicos/farmacología , Animales , Antidepresivos/farmacología , Suspensión Trasera , Masculino , Ratones , Óxido Nítrico , Natación
4.
Biomed Pharmacother ; 115: 108873, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31003079

RESUMEN

Gingerol - [6]-gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone; [6]-G) - is a phenolic compound with several pharmacological properties. Herein, the aim of the study was to evaluate the toxicogenic effects of [6]-G on Artemia salina nauplii, Allium cepa, HL-60 cell line and Sarcoma 180 (S-180) ascitic fluid cells.For toxic and genotoxic analysis, it was used [6]-G concentrations of 5, 10, 20 and 40 µg mL-1. For cytotoxic evaluation using the MTT test (3- [4,5-dimethyl-thiazol-2-yl] -2,5-diphenyl tetrazolium bromide), serial [6]-G dilutions (1.56-100 µg mL-1) were performed, and S-180, HL-60 and peripheral blood mononuclear cells (PBMC) were treated for 72 h. The IC50 of [6]-G were 1.14, 5.73 and 11.18 µg mL-1 for HL-60, S-180 and PBMC, respectively, indicating a possible selectivity against tumor cell lines. At higher concentrations (>10 µg mL-1), toxicity and genotoxicity were observed in the A. cepa test, especially at 40 µg mL-1. Mechanisms indicating apoptosis, such as toxicity, cytotoxicity and nuclear abnormalities (bridges, fragments, delays, loose chromosomes and micronuclei) suggest that [6]-G has potential for antitumor pharmaceutical formulations.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Bioensayo , Catecoles/farmacología , Supervivencia Celular/efectos de los fármacos , Alcoholes Grasos/farmacología , Animales , Artemia/efectos de los fármacos , Catecoles/administración & dosificación , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Alcoholes Grasos/administración & dosificación , Humanos , Ratones , Cebollas/citología
5.
Biomed Pharmacother ; 110: 68-73, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30466004

RESUMEN

Agathisflavone (AGF) is a biflavonoid with a number of important biological and pharmacological activities, such as antioxidant, antimicrobial, and neuroprotective effects. However, its toxicological effects have not been fully investigated. Accordingly, the aim of this study was to investigate the toxicological effects of AGF in mice. For this purpose, the median lethal dose 50% (LD50) was determined along with the anatomic and histopathological parameters (weight, alimentation, excretion, biochemical, and hematological) in fertile untouched female Swiss mice. Results suggest that during the treatment, no deaths were reported at 300 and 2000 mg/kg (n = 03/group, p.o.). Moreover, AGF did not cause significant change in the above mentioned parameters in test animals when compared with the control group (0.05% Tween 80 dissolved in 0.9% saline). Taken all together, this non-clinical toxicological study revealed that AGF has an LD50 larger than 2000 mg/kg and did not change significantly the hematological, biochemical, histopathological, behavioral, as well as physiological parameters in the female mice.


Asunto(s)
Biflavonoides/toxicidad , Extractos Vegetales/toxicidad , Animales , Biflavonoides/aislamiento & purificación , Evaluación Preclínica de Medicamentos/métodos , Femenino , Dosificación Letal Mediana , Ratones , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante/métodos
6.
Appl Biochem Biotechnol ; 188(1): 282-296, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30430345

RESUMEN

This study evaluates a correlation between family history, micronutrients intake, and alternative therapies with genetic instability, before and during breast cancer treatment. For this study, a total of 150 women were selected. Among those, 50 women were breast cancer patients on chemotherapy, while 50 breast cancer patients were on radiotherapy, and 50 were healthy females. All the participants signed the informed consent form and answered the public health questionnaire. Samples of buccal epithelial and peripheral blood cells were collected and analyzed through micronucleus and comet assays. The cells were evaluated for apoptosis and DNA damage. Results showed the association of patients' family history with an increase in toxicogenetic damage before and during cancer therapy. On the other hand, patients with late-onset cancer also presented genetic instability before and during therapy, along with those who did not take sufficient vegetables and alternative therapies. A positive correlation was observed between the genetic instability and alternative therapies, while inverse correlation was recorded with the vegetable consumption. Results clearly explain that the nutritional aspects and alternative therapies influence the genetic instability before and during cancer therapies especially in radiotherapy treated patients. Our data could be used for the monitoring therapies and management of breast cancer patients.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/fisiopatología , Terapias Complementarias , Dieta , Inestabilidad Genómica , Anamnesis , Estudios de Casos y Controles , Ensayo Cometa , Femenino , Frutas , Predisposición Genética a la Enfermedad , Humanos , Persona de Mediana Edad , Verduras
7.
Curr Drug Metab ; 19(6): 544-556, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29512445

RESUMEN

BACKGROUND: The popular drink, coffee (Coffea arabica) is under the great attention of late because of its promising pharmacological potential. Caffeine (the major constituent of coffee) is known for its prominent psychoactive impact. This review aims at highlighting the therapeutic potentials of caffeine and other five coffee components viz. caffeic acid, chlorogenic acids, cafestol, ferulic acid and kahweol and their mechanisms of action. METHODS: An up-to-date search was made with selected keywords in PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society and miscellaneous databases (e.g., Google Scholar) for the published literature on the selected topic. RESULTS: A number of pharmacological activities are attributed to these components that include anti-oxidant, antiinflammatory, immunomodulatory, anti-microbial, anti-cancer, cardioprotective and neuroprotective effects. In addition, osteogenesis (kahweol), anti-diabetic (caffeine, chlorogenic acid and ferulic acid) and hepatoprotective (chlorogenic acid) activities have also been reported by some of these components in the scientific literature. Caffeine has also been noted for adverse effect on the development of the brain at early stages and reproductive systems. CONCLUSION: A more advanced pre-clinical and clinical trials are recommended to investigate the safety profiles of these coffee components before their use as possible therapeutics.


Asunto(s)
Café/química , Fitoquímicos/farmacología , Animales , Coffea/química , Humanos , Fitoquímicos/farmacocinética
8.
Cancer Lett ; 420: 129-145, 2018 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-29408515

RESUMEN

The diterpene lactone andrographolide, isolated from Andrographis paniculata, has been proven to possess several important protective biological activities, including antioxidant, anti-inflammatory, immunomodulatory, antiseptic, antimicrobial, cytotoxic, hypolipidemic, cardioprotective, hepatoprotective, and neuroprotective effects. In addition, it has been reported to play a therapeutic role in the treatment of major human diseases, such as Parkinson's disease, rheumatoid arthritis, and colitis. This systematic review aims to highlight andrographolide as a promising agent in cancer treatment. To this purpose, a number of databases were used to search for the cytotoxic/anticancer effects of andrographolide in pre-clinical and clinical studies. Among 1703 identified literature articles, 139 were included in this review; 109 were investigated as non-clinical, whereas 24, 3, and 3 were pre-clinical, clinical, and non-pre-clinical trials, respectively. Among the model systems, cultured cell lines appeared as the most frequently (79.14%) used, followed by in vivo models using rodents, among others. Furthermore, andrographolide was found to exert cytotoxic/anticancer effects on almost all types of cell lines with the underlying mechanisms involving oxidative stress, cell cycle arrest, anti-inflammatory and immune system mediated effects, apoptosis, necrosis, autophagy, inhibition of cell adhesion, proliferation, migration, invasion, anti-angiogenic activity, and other miscellaneous actions. After careful consideration of the relevant evidence, we suggest that andrographolide can be one of the potential agents in the treatment of cancer in the near future.


Asunto(s)
Andrographis/química , Antineoplásicos Fitogénicos/uso terapéutico , Diterpenos/farmacología , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diterpenos/química , Humanos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología
9.
Environ Monit Assess ; 189(6): 301, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28555439

RESUMEN

In general, tropical rivers have a great impact on human activities. Bioaccumulation of toxins is a worldwide problem nowadays and has been, historically, overlooked by the supervisory authorities. This study evaluated cytogenotoxic effects of Guaribas river (a Brazilian river) water during dry and rainy seasons of 2014 by using the Allium cepa test system. The toxicogenetic variables, including root growth, mitotic index, and chromosomal aberrations, were analyzed in meristematic cells of A. cepa exposed to water samples taken from the up-, within, and downstream of the city Picos (state: Piauí). The physical-chemical parameters were also analyzed to explain water quality and possible anthropogenic action. Additionally, the presence of heavy metals was also analyzed to explain water quality and possible damaging effects on eukaryotic cells. The results suggest that the river water exerted cytotoxic, mutagenic, and genotoxic effects, regardless of the seasons. In addition, Guaribas river presented physico-chemical values outside the Brazilian laws, which can be a characteristic of human pollution (domestic sewage, industrial, and local agriculture). The genetic damage was positively correlated with higher levels of heavy metals. The pollution of the Guaribas river water may link to the chemical contamination, including the action of heavy metals and their impacts on genetic instability in the aquatic ecosystem. In conclusion, necessary steps should be taken into account for further toxicogenetic studies of the Guaribas river water, as it has an influence in human health of the same region of Brazil.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua/toxicidad , Brasil , Daño del ADN , Ecosistema , Humanos , Metales Pesados/análisis , Metales Pesados/toxicidad , Mutágenos/toxicidad , Cebollas/efectos de los fármacos , Lluvia , Ríos/química , Estaciones del Año , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis , Calidad del Agua
10.
Chemosphere ; 177: 93-101, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28284120

RESUMEN

Phytol (PYT) is a diterpenoid having important biological activity. However, it is a water non-soluble compound. This study aims to prepare PYT nanoemulsion (PNE) and evaluation of toxic, cytotoxic and genotoxic activities of PYT and PNE. For this, the PNE was prepared by the phase inversion method. The cytotoxicity test was performed in Artemia salina, while toxicity, cytotoxicity and genotoxicity in Allium cepa at concentrations of 2, 4, 8 and 16 mM. Potassium dichromate and copper sulfate were used as positive controls for the tests of A. salina and A. cepa, respectively. In addition, an adaptation response was detected in A. cepa by using the comet assay. The results suggest that both PYT and PNE exhibited toxic and cytotoxic effects at 4-16 mM in either test system, while genotoxicity at 2-16 mM in A. cepa. PNE exhibited more toxic, cytotoxic and genotoxic effects at 8 and 16 mM than the PYT. However, both PYT and PNE at 2 and 4 mM decreased the index and frequency of damage in A. cepa after 48 and 72 h, suggesting a possible adaptation response or DNA damage preventing capacity. Nanoemulsified PYT (PNE) may readily cross the biological membranes with an increase in bioavailability and produce more toxic, cytotoxic and genotoxic effects in the used test systems.


Asunto(s)
Artemia/crecimiento & desarrollo , Daño del ADN/efectos de los fármacos , Nanopartículas/toxicidad , Cebollas/citología , Fitol/toxicidad , Animales , Artemia/efectos de los fármacos , Ensayo Cometa , Emulsiones/química , Emulsiones/toxicidad , Nanopartículas/química , Cebollas/efectos de los fármacos
11.
Phytother Res ; 31(2): 175-201, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27896890

RESUMEN

Nowadays, neglected tropical diseases (NTDs) are reported to be present everywhere. Poor and developing areas in the world have received great attention to NTDs. Drug resistance, safety profile, and various challenges stimulate the search for alternative medications. Plant-based drugs are viewed with great interest, as they are believed to be devoid of side effects. Diterpenes, a family of essential oils, have showed attractive biological effects. A systematic review of the literature was carried out to summarize available evidences of diterpenes against NTDs. For this, databases were searched using specific search terms. Among the 2338 collected reports, a total of 181 articles were included in this review. Of them, 148 dealt with investigations using single organisms, and 33 used multiple organisms. No mechanisms of action were reported in the case of 164 reports. A total of 93.92% were related to nonclinical studies, and 4.42% and 1.66% dealt with preclinical and clinical studies, respectively. The review displays that many diterpenes are effective upon Chagas disease, chikungunya, echinococcosis, dengue, leishmaniasis, leprosy, lymphatic filariasis, malaria, schistosomiasis, and tuberculosis. Indeed, diterpenes are amazing drug candidates against NTDs. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Diterpenos/química , Enfermedades Desatendidas/terapia , Medicina Tropical/tendencias , Humanos
12.
Chemosphere ; 164: 134-141, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27588572

RESUMEN

Pollution of aquatic ecosystems is associated with the discharge of mostly industrial and urban effluents, which may cause loss of biodiversity and damage to public health. This study aims to evaluate the toxicity and mutagenicity of water samples collected in the Corrente River, a major waterway in the river basin district of Pedro II, Piauí (Brazil). This river is exposed to intense anthropogenic influence from urban, automotive mechanical and family farm waste, and it is used as the main source of water supply by the population. Water samples were collected during the rainy and dry seasons, at four sites in the Corrente River, and evaluated by physicochemical, microbiological and inorganic elements analyses. The samples were evaluated for mutagenicity using the Allium cepa test (toxicity, chromosomal aberration and micronucleus tests) and fish (Tilapia rendalli and Hoplias malabaricus). The physicochemical, microbiological and inorganic results show a large contribution to the pollution loads at collection points in the town of Pedro II, demonstrating the influence of urban pollution. The Al, Si, Ti, Cr, Ni and Cu contents were determined by PIXE. These same Corrente River water samples demonstrated mutagenic effect for A. cepa and fish, as well as toxicity in the A. cepa test. The observations of mutagenic effect may suggest that the complex mixture of agents is comprised of both clastogenic and aneugenic agents. This study also showed the need for constant monitoring in places with environmental degradation caused by urban sewage discharges.


Asunto(s)
Characiformes/metabolismo , Cíclidos/metabolismo , Cebollas/efectos de los fármacos , Ríos/química , Contaminantes Químicos del Agua/toxicidad , Animales , Brasil , Agua Dulce/análisis , Pruebas de Micronúcleos/veterinaria , Pruebas de Mutagenicidad , Estaciones del Año , Pruebas de Toxicidad
13.
Phytother Res ; 30(9): 1420-44, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27307034

RESUMEN

Among all plant derivates, essential oils (EOs) have gained the attention of many scientists. Diterpenes, a family of components present in some EO, are becoming a milestone in the EOs world. The goal of this review is to describe a scenario of diterpenes taking into health-consumption deportment. Previous studies revealed that diterpenes have antioxidant, antimicrobial, antiviral, antiprotozoal, cytotoxic, anticancer, antigenotoxic, antimutagenic, chemopreventive, antiinflammatory, antinociceptive, immunostimulatory, organoprotective, antidiabetic, lipid-lowering, antiallergic, antiplatelet, antithrombotic, and antitoxin activities. In conclusion, diterpenes may be an immense featuring concern in pharmaceutical consumption from a drug discovery point of view. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Diterpenos/química , Aceites Volátiles/química , Aceites de Plantas/química , Antiinfecciosos , Antioxidantes , Productos Biológicos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA