Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Endourol ; 28(2): 229-36, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24059642

RESUMEN

BACKGROUND AND PURPOSE: Raising urinary pH and citrate excretion with alkali citrate therapy has been a widely used treatment in calcium nephrolithiasis. Citrate lowers ionized Ca(+2) concentrations and inhibits calcium salt precipitation. Conservative alternatives containing citrate such as fruit juices have been investigated and recommended. Any compound that induces systemic alkalosis will increase citraturia. Malate, a polycarboxylic anion like citrate, is a potential candidate for chelating Ca(+2) and for inducing systemic alkalinization. We undertook to investigate these possibilities. MATERIALS AND METHODS: Theoretical modeling of malic acid's effects on urinary Ca(+2) concentration and supersaturation (SS) of calcium salts was achieved using the speciation program JESS. Malic acid (1200 mg/day) was ingested for 7 days by eight healthy subjects. Urines (24 hours) were collected at baseline and on day 7. They were analyzed for routine lithogenic components, including pH and citrate. Chemical speciation and SS were calculated in both urines. RESULTS: Modeling showed that complexation between calcium and malate at physiological concentrations of the latter would have no effect on SS. Administration of the supplement induced statistically significant increases in pH and citraturia. The calculated concentration of Ca(+2) and concomitant SS calcium oxalate (CaOx) decreased after supplementation, but these were not statistically significant. SS for the calcium phosphate salts hydroxyapatite and tricalcium phosphate increased significantly as a consequence of the elevation in pH, but values for brushite and octacalcium phosphate did not change significantly. CONCLUSIONS: We speculate that consumption of malic acid induced systemic alkalinization leading to reduced renal tubular reabsorption and metabolism of citrate, and an increase in excretion of the latter. The decrease in SS(CaOx) was caused by enhanced complexation of Ca(+2) by citrate. We conclude that malic acid supplementation may be useful for conservative treatment of calcium renal stone disease by virtue of its capacity to induce these effects.


Asunto(s)
Oxalato de Calcio/metabolismo , Citratos/orina , Suplementos Dietéticos , Cálculos Renales/terapia , Malatos/administración & dosificación , Adolescente , Humanos , Concentración de Iones de Hidrógeno , Cálculos Renales/metabolismo , Masculino , Modelos Químicos , Fosfatos/análisis , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA