RESUMEN
There is growing evidence that thinned retinal regions are interspersed with thickened regions in all retinal layers of patients with Alzheimer's disease (AD), causing roughness to appear on layer thickness maps. The hypothesis is that roughness of retinal layers, assessed by the fractal dimension (FD) of their thickness maps, is an early biomarker of AD. Ten retinal layers have been studied in macular volumes of optical coherence tomography from 24 healthy volunteers and 19 patients with mild AD (Mini-Mental State Examination 23.42 ± 3.11). Results show that FD of retinal layers is greater in the AD group, the differences being statistically significant (p < 0.05). Correlation of layer FD with cognitive score, visual acuity and age reach statistical significance at 7 layers. Nearly all (44 out of 45) FD correlations among layers are positive and half of them reached statistical significance (p < 0.05). Factor analysis unveiled two independent factors identified as the dysregulation of the choroidal vascular network and the retinal inflammatory process. Conclusions: surface roughness is a holistic feature of retinal layers that can be assessed by the FD of their thickness maps and it is an early biomarker of AD.
Asunto(s)
Enfermedad de Alzheimer/complicaciones , Retina/patología , Enfermedades de la Retina/complicaciones , Enfermedades de la Retina/patología , Enfermedad de Alzheimer/diagnóstico , Biomarcadores , Estudios de Casos y Controles , Estudios Transversales , Humanos , Retina/diagnóstico por imagen , Enfermedades de la Retina/diagnóstico por imagen , Tomografía de Coherencia ÓpticaRESUMEN
Saffron (Crocus sativus L.) has been traditionally used in food preparation and as a medicinal plant. It currently has numerous therapeutic properties attributed to it, such as protection against ischemia, as well as anticonvulsant, antidepressant, anxiolytic, hypolipidemic, anti-atherogenic, anti-hypertensive, antidiabetic, and anti-cancer properties. In addition, saffron has remarkable beneficial properties, such as anti-apoptotic, anti-inflammatory and antioxidant activities, due to its main metabolites, among which crocin and crocetin stand out. Furthermore, increasing evidence underwrites the possible neuroprotective role of the main bioactive saffron constituents in neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, both in experimental models and in clinical studies in patients. Currently, saffron supplementation is being tested for ocular neurodegenerative pathologies, such as diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration and glaucoma, among others, and shows beneficial effects. The present article provides a comprehensive and up to date report of the investigations on the beneficial effects of saffron extracts on the main neurodegenerative ocular pathologies and other ocular diseases. This review showed that saffron extracts could be considered promising therapeutic agents to help in the treatment of ocular neurodegenerative diseases.
RESUMEN
Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells (RGCs). An increase in the intraocular pressure is the principal risk factor for such loss, but controlling this pressure does not always prevent glaucomatous damage. Activation of immune cells resident in the retina (microglia) may contribute to RGC death. Thus, a substance with anti-inflammatory activity may protect against RGC degeneration. This study investigated the neuroprotective and anti-inflammatory effects of a hydrophilic saffron extract standardized to 3% crocin content in a mouse model of unilateral, laser-induced ocular hypertension (OHT). Treatment with saffron extract decreased microglion numbers and morphological signs of their activation, including soma size and process retraction, both in OHT and in contralateral eyes. Saffron extract treatment also partially reversed OHT-induced down-regulation of P2RY12. In addition, the extract prevented retinal ganglion cell death in OHT eyes. Oral administration of saffron extract was able to decrease the neuroinflammation associated with increased intraocular pressure, preventing retinal ganglion cell death. Our findings indicate that saffron extract may exert a protective effect in glaucomatous pathology.