Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Appl Biochem ; 69(5): 2081-2090, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34617628

RESUMEN

Nitrilases and nitrile hydratases/amidases hydrolyze nitriles into carboxylic acids and/or amides, which are used in industrial chemical processes. In the present study, 26 microorganisms, including yeasts and filamentous fungi, in a minimum solid mineral medium supplemented with glucose and phenylacetonitrile were screened to evaluate their biocatalytic potential. Of these microorganisms, five fungi of the genus Aspergillus were selected and subjected to colorimetry studies to evaluate the production and distinction of nitrilase and nitrile hydratase/amidase enzymes. Aspergillus parasiticus Speare 7967 and A. niger Tiegh. 8285 produced nitrilases and nitrile hydratase, respectively. Nitrilase optimization was performed using a Box-Behnken design (BBD) and fungus A. parasiticus Speare 7967 with phenylacetonitrile volume (µl), pH, and carbohydrate source (starch:glucose; g/g) as independent variables and nitrilase activity (U ml-1 ) as dependent variable. Maximum activity (2.97 × 10-3  U ml-1 ) was obtained at pH 5.5, 80 µl of phenylacetonitrile, and 15 g of glucose. A. parasiticus Speare 7967 showed promise in the biotransformation of nitriles to carboxylic acids.


Asunto(s)
Aminohidrolasas , Ensayos Analíticos de Alto Rendimiento , Hongos , Nitrilos/metabolismo , Ácidos Carboxílicos/metabolismo , Aspergillus/metabolismo , Glucosa
2.
Prep Biochem Biotechnol ; 52(8): 885-893, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34965202

RESUMEN

Solid state fermentation (SSF) simulates the natural conditions fungal growth, where the amount of water in the reaction medium must be restricted, thus limiting the use of liquid substrate. An analytical strategy to deal with this limitation is the design of blending with constraints. Thus, the objective of the work was to optimize two constrained waste mixtures for the production of lipase by Penicillium roqueforti ATCC 10110 under SSF, using different substrates that combine solid and liquid waste. For this, the best fermentation time was determined through a fermentative profile, afterwards a restricted-mix design with lower and upper limits of the components of mixture I (cocoa residue, solid palm oil residue and liquid palm oil residue) and II (cocoa residue, mango residue and palm oil residue liquid palm) was applied. By means of Pareto and contour graphs, the maximum production points of lipase in mixtures I (6.67 ± 0.34 U g-1) and II (6.87 ± 0.35 U g-1) were obtained. The restricted mixture design proved to be a promising tool in the production of lipase by P. roqueforti ATCC 10110 under SSF since the use of restrictions is useful when intending to combine solid and liquid residues in fermentation processes.


Asunto(s)
Residuos Industriales , Lipasa , Fermentación , Lipasa/metabolismo , Aceite de Palma , Penicillium
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA