RESUMEN
Metal-organic frameworks aluminum terephthalate MIL-53 and Cu-benzene-1,3,5-tricarboxylate (BTC) were tested for extraction of pyrimethanil, ametryn, dichlofluanid, tetraconazole, flumetralin, kresoximmethyl, and tebuconazole from the medicinal plant Hyptis pectinata, with analysis using GC/MS in the selected ion monitoring mode. Experiments carried out at different fortification levels (0.1, 0.5, and 1.0 microg/g) resulted in recoveries in the range 61 to 107% with RSD values between 3 and 12% for the metal-organic framework materials. Detection and quantification limits ranged from 0.02 to 0.07 and 0.05 to 0.1 microg/g, respectively, for the different pesticides studied. The method developed was linear over the range tested (0.04-20.0 microg/g), with correlation coefficients ranging from 0.9987 to 0.9998. Comparison of MIL-53 and Cu-BTC with C18-bonded silica showed good performance of the MIL-53 metal-organic framework as a sorbent for the pesticides tested.
Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Hyptis/química , Metales/química , Plaguicidas/química , Extracción en Fase Sólida/métodos , Adsorción , Residuos de Plaguicidas/química , Plantas Medicinales/químicaRESUMEN
The coordination polymer [Zn(BDC)(H(2)O)(2)](n) was tested for extraction of pyrimethanil, ametryn, dichlofluanid, tetraconazole, flumetralin, kresoxim-methyl and tebuconazole from the medicinal plant Hyptis pectinata, with analysis using gas chromatography-mass spectrometry in selected ion monitoring mode (GC/MS, SIM). Experiments carried out at different fortification levels (0.1, 0.5 and 1.0 µg g(-1)) resulted in recoveries in the range 73-97%, and RSD values were between 5 and 12% for the [Zn(BDC)(H(2)O)(2)](n) sorbent. Detection and quantification limits ranged from 0.02 to 0.07 µg g(-1) and from 0.05 to 0.1 µg g(-1), respectively, for the different pesticides studied. The method developed was linear over the range tested (0.04-14.0 µg g(-1)), with correlation coefficients ranging from 0.9987 to 0.9998. Comparison between [Zn(BDC)(H(2)O)(2)](n) and the commercial phase C(18)-bonded silica showed good performance of the [Zn(BDC)(H(2)O)(2)](n) polymeric sorbent for the pesticides tested.
Asunto(s)
Plaguicidas/química , Polímeros/química , Pirimidinas/química , Extracción en Fase Sólida/métodos , Adsorción , Compuestos de Anilina/análisis , Técnicas de Química Analítica , Clorobencenos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Hyptis/metabolismo , Metacrilatos/análisis , Microscopía Electrónica de Rastreo/métodos , Plaguicidas/análisis , Plaguicidas/farmacología , Fenilacetatos/análisis , Extractos Vegetales , Plantas Medicinales/metabolismo , Estrobilurinas , Triazinas/análisis , Triazoles/análisisRESUMEN
Using a simple and easily implemented desorption/ionization mass spectrometry technique, a tiny droplet of biodiesel placed on the surface of a sheet of paper is analyzed directly and nearly instantaneously under ambient conditions. No pre-separation or sample preparation is required, and clean mass spectra are obtained with great simplicity. In the positive ion mode, easy ambient sonic-spray ionization mass spectrometry, EASI(+)-MS, provides typical profiles of the major components of biodiesel samples, that is, either methyl esters (FAME) or ethyl esters (FAEE) of the natural fatty acids and triglycerides (TAG) from residual oil or oil from adulteration. Each FAME (FAEE) or TAG molecule is detected as a single sodiated molecule, [M + Na] (+) with relative intensities that correlate well with the known fatty acid profiles of the oil. Using EASI(-)-MS, typical and complementary profiles of free fatty acids (FFA) are obtained, which are detected in their deprotonated forms [FAA - H] (-). A general, single-shot approach for biodiesel analysis is therefore described, and samples from different feedstocks, from blends with petrodiesel, or from either methanol or ethanol trans-esterification are readily typified and major parameters of quality accessed.