Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Technol ; 44(25): 3820-3833, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35510383

RESUMEN

The biochar amendment to soil proved to be beneficial to improve soil quality and provide nutrients. However, the effect of biochar on the availability of P is still controversial. We aim to study the effect of adding phosphate fertiliser and biochar on the P bioavailability in soils of different mineralogies. Eight biochars derived from biomass (rice husk and coffee husk), soil (sandy and clayey), and phosphate fertiliser (triple superphosphate) were produced. The biochar enrichment process with superphosphate was carried out before and after pyrolysis. Thus, we tested two biochar groups: (1) enriched biochars prior to pyrolysis; (2) enriched biochars after pyrolysis. These biochars were tested as P sources in soils of three mineralogies (kaolinite/oxide, kaolinite, and smectite). Batch sorption-desorption experiments were conducted. The sorbed P was fractionated to examine the factors controlling the retention of applied P. In the three soil mineralogies the use of enriched biochars prior to pyrolysis results in lower availability of P. In contrast, the enriched biochars after pyrolysis increase the bioavailability of P. The coffee husk biochar is more suitable than rice husk biochar to protect P from soil retention reactions. The use of sandy soil rather than clayey soil in enriched biochars compositions results in higher P content availability when applied to soils. The factor that controls the retention of P is the reaction between P, organic compounds, and Fe and Al compounds. The greater the relationship between biochar and soluble P in the fertiliser, the higher the increase of P retention.


Asunto(s)
Contaminantes del Suelo , Suelo , Fósforo , Fosfatos/análisis , Fertilizantes , Caolín , Carbón Orgánico , Arcilla , Contaminantes del Suelo/análisis
2.
Environ Monit Assess ; 194(5): 388, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35445983

RESUMEN

Over the past decades, lands alongside Gurguéia River have witnessed rapid expansion of soybean agriculture which has increased soil degradation and affected nutrient concentration in sediment, especially phosphorus (P). The present study aimed to quantify the P concentration in soils under different land uses (i.e., croplands, grasslands, and cerrado) and fluvial sediments (suspended sediment, channel bank, and riverbed sediments), assessing pollution over the main watercourse in cerrado biome Gurguéia watershed, located in Piauí State, Brazil. In total, 136 composite soil samples at a depth of 0-5 cm, under different land uses, as well as 51 composite fluvial sediment samples were collected over the watershed. The land use change from native cerrado had resulted in an increase of total phosphorus (TP) whose concentration was higher in cropland areas, followed by suspended sediment, channel bank, and riverbed sediments. This high concentration in cropland areas resulted from phosphate fertilizer inputs. The transfer of phosphorus to water bodies was evidenced, since an increase of TP was observed in suspended sediment, channel bank and riverbed  sediments. Mineralogical signatures in sediments were identified by X-ray diffraction analysis which showed the occurrence of kaolinite, illite, smectite, iron oxides, and other minerals in lesser proportions. The presence of 1:1 minerals was higher in riverbed sediments and downstream sampling points, while 2:1 minerals were present in higher proportions in suspended sediment and channel bank sediment, as well as at the upstream and middle sampling points. This finding shows that land use change from cerrado to cropland due to soybean agriculture expansion might increase P discharges from terrestrial to aquatic environments, with sediments being the major carrier of this element.


Asunto(s)
Fósforo , Suelo , Agricultura , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Fósforo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA