Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 242(4): 1630-1644, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105548

RESUMEN

Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.


Asunto(s)
Micorrizas , Oomicetos , Fósforo , Micorrizas/fisiología , Fósforo/metabolismo , Oomicetos/fisiología , Oomicetos/patogenicidad , Eucalyptus/microbiología , Eucalyptus/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/microbiología , Simbiosis/fisiología , Especificidad de la Especie , Ambiente
2.
Trends Plant Sci ; 26(11): 1116-1125, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34315662

RESUMEN

Plants have evolved numerous strategies to acquire poorly available nutrients from soil, including the release of carboxylates from their roots. Silicon (Si) release from mineral dissolution increases in the presence of chelating substances, and recent evidence shows that leaf [Si] increases markedly in old phosphorus (P)-depleted soils, where many species exhibit carboxylate-releasing strategies, compared with younger P-richer soils. Here, we propose that root-released carboxylates, and more generally rhizosphere processes, play an overlooked role in plant Si accumulation by increasing soil Si mobilisation from minerals. We suggest that Si mobilisation is costly in terms of carbon but becomes cheaper if those costs are already met to acquire poorly available P. Uptake of the mobilised Si by roots will then depend on whether they express Si transporters.


Asunto(s)
Micorrizas , Fósforo , Raíces de Plantas , Rizosfera , Silicio , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA