Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Carbohydr Polym ; 335: 122010, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616103

RESUMEN

The mesocarp (albedo) of passion fruit is considered a waste product but rich in soluble fibers, especially pectins. Biological activity and health benefits of pectins have recently emerged, especially in colorectal cancer and attenuating inflammation. Pectin conventional extraction often uses mineral acids, which can be hazardous to the environment, and alternatives can be costly. Here, we assessed a high-temperature and pressure method to extract pectin from the passion fruit albedo and evaluated the differences from the water-soluble fractions extracted. HPSEC, HPAEC, FTIR-ATR, and HSQC-NMR were performed to identify and confirm the highly methylated homogalacturonan structures. The heat-modified samples showed a decreased molecular size compared to the untreated sample. Colorectal cancer cell lines showed reduced viability after being treated with different doses of modified samples, with two of them, LW-MP3 and 4, showing the most potent effects. All samples were detected inside cells by immunofluorescence assay. It was observed that LW-MP3 and 4 upregulated the p53 protein, indicating cell-cycle arrest and the cleaved caspase-9 in one of the cell lines, with LW-MP4 enhancing cell death by apoptosis. Since the modified samples were composed of hydrolyzed homogalacturonans, those probably were the responsible structures for these anti-cancer effects.


Asunto(s)
Neoplasias Colorrectales , Passiflora , Frutas , Temperatura , Polisacáridos/farmacología , Pectinas/farmacología
2.
Compr Rev Food Sci Food Saf ; 23(1): e13271, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284595

RESUMEN

Breastmilk is seen as the gold standard for infant nutrition as it provides nutrients and compounds that stimulate gut barrier, immune, and brain development to the infant. However, there are many instances where it is not possible for an infant to be fed with breastmilk, especially for the full 6 months recommended by the World Health Organization. In such instances, infant formula is seen as the next best approach. However, infant formulas do not contain human milk oligosaccharides (hMOs), which are uniquely present in human milk as the third most abundant solid component. hMOs have been linked to many health benefits, such as the development of the gut microbiome, the immune system, the intestinal barrier, and a healthy brain. This paper reviews the effects of specific hMOs applied in infant formula on the intestinal barrier, including the not-often-recognized intestinal alkaline phosphatase system that prevents inflammation. Additionally, impact on immunity and the current proof for effects in neurocognitive function and the corresponding mechanisms are discussed. Recent studies suggest that hMOs can alter gut microbiota, modulate intestinal immune barrier function, and promote neurocognitive function. The hMOs 2'-fucosyllactose and lacto-N-neotetraose have been found to have positive effects on the development of infants and have been deemed safe for use in formula. However, their use has been limited due to their cost and complexity of synthesis. Thus, although many benefits have been described, complex hMOs and combinations of hMOs with other oligosaccharides are the best approach to stimulate gut barrier, immune, and brain development and for the prevention of disease.


Asunto(s)
Microbioma Gastrointestinal , Leche Humana , Lactante , Humanos , Fórmulas Infantiles , Oligosacáridos/farmacología , Suplementos Dietéticos
3.
Food Funct ; 15(2): 569-579, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38170495

RESUMEN

This study investigates the anti-inflammatory effects of pectins with different degrees of methyl esterification (DM) on intestinal epithelial cells (IECs) expressing low and high levels of TLR2. It also studies the influence of soluble TLR2 (sTLR2) which may be enhanced in patients with inflammatory bowel syndrome on the inflammation-attenuating effects of pectins. Also, it examines the impact of pectins on tight junction gene expression in IECs. Lemon pectins with DM18 and DM88 were characterized, and their effects on TLR2-1-induced IL8 gene expression and secretion were investigated in low-TLR2 expressing Caco-2 and high-TLR2 expressing DLD-1 cells. The results demonstrate that both DM18 and DM88 pectins can counteract TLR2-1-induced IL-8 expression and secretion, with more pronounced effects observed in DLD-1 cells expressing high levels of TLR2. Furthermore, the presence of sTLR2 does not interfere with the attenuating effects of low DM18 pectin and may even support its anti-inflammatory effects in Caco-2 cells. The impact of pectins and sTLR2 on tight junction gene expression also demonstrates cell-type-dependent effects. Overall, these findings suggest that low DM pectins possess potent anti-inflammatory properties and may influence tight junction gene expression in IECs, thereby contributing to the maintenance of gut homeostasis.


Asunto(s)
Interleucina-8 , Receptor Toll-Like 2 , Humanos , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Células CACO-2 , Uniones Estrechas/metabolismo , Esterificación , Expresión Génica , Pectinas/farmacología , Pectinas/metabolismo , Antiinflamatorios/metabolismo
4.
Food Funct ; 14(13): 6226-6235, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37345990

RESUMEN

Pectins support intestinal barrier function and have anti-diabetic effects, and can differ in the degree of methyl-esterification (DM) and the distribution of non-esterified galacturonic acid residues (DB). The mechanisms and effects of pectin type at different glucose levels are unknown. Pectins with different DM/DB on T84 cells were tested in the presence and absence of the barrier disruptor A23187 at 5 mM and 20 mM glucose. DM19 and DM43 pectins with high DB do rescue the intestinal barrier from disruption. Their effects were as strong as those of the barrier-rescuing anti-diabetic drug metformin, but effects with metformin were restricted to high glucose levels while pectins had effects at both low and high glucose levels. At high glucose levels, DM43HB pectin, which enhanced trans-epithelial electrical resistance, also increased the expressions of claudin1, occludin, and ZO-1. Low and high DM pectins decrease the apical expression of the sodium-glucose co-transporter (SGLT-1) and thereby influence glucose transport, explaining the anti-diabetogenic effect of pectin. Higher DB pectins had the strongest effect. Their impact on SGLT-1 was stronger than that of metformin. Pectin's rescuing effect on barrier disruption and its impact on glucose transportation and anti-diabetogenic effects depend on both the DB and the DM of pectins.


Asunto(s)
Pectinas , Simportadores , Esterificación , Pectinas/química , Células Epiteliales/metabolismo , Glucosa , Simportadores/metabolismo , Sodio/metabolismo
5.
Carbohydr Polym ; 303: 120444, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657837

RESUMEN

Citrus pectins have demonstrated health benefits through direct interaction with Toll-like receptor 2. Methyl-ester distribution patterns over the homogalacturonan were found to contribute to such immunomodulatory activity, therefore molecular interactions with TLR2 were studied. Molecular-docking analysis was performed using four GalA-heptamers, GalA7Me0, GalA7Me1,6, GalA7Me1,7 and GalA7Me2,5. The molecular relations were measured in various possible conformations. Furthermore, commercial citrus pectins were characterized by enzymatic fingerprinting using polygalacturonase and pectin-lyase to determine their methyl-ester distribution patterns. The response of 12 structurally different pectic polymers on TLR2 binding and the molecular docking with four pectic oligomers clearly demonstrated interactions with human-TLR2 in a structure-dependent way, where blocks of (non)methyl-esterified GalA were shown to inhibit TLR2/1 dimerization. Our results may be used to understand the immunomodulatory effects of certain pectins via TLR2. Knowledge of how pectins with certain methyl-ester distribution patterns bind to TLRs may lead to tailored pectins to prevent inflammation.


Asunto(s)
Ésteres , Receptor Toll-Like 2 , Humanos , Simulación del Acoplamiento Molecular , Conformación Molecular , Pectinas/química
6.
Acta Biomater ; 158: 151-162, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36610609

RESUMEN

Immunoisolation of pancreatic-islets in alginate-microcapsules is applied to treat diabetes. However, long-term islet function is limited, which might be due to damaged and lack of contact with pancreatic extracellular matrix (ECM) components. Herein we investigated the impact of collagen IV combined with laminin sequences, either RGD, LRE, or PDSGR, on graft-survival of microencapsulated bioluminescent islets in vivo. Collagen IV with RGD had the most pronounced effect. It enhanced after 8-week implantation in immune-incompetent mice the bioluminescence of allogeneic islets by 3.2-fold, oxygen consumption rate by 14.3-fold and glucose-induced insulin release by 9.6-fold. Transcriptomics demonstrated that ECM enhanced canonical pathways involving insulin-secretion and that it suppressed pathways related to inflammation and hypoxic stress. Also, 5.8-fold fewer capsules were affected by fibrosis. In a subsequent longevity study in immune-competent mice, microencapsulated allografts containing collagen IV and RGD had a 2.4-fold higher functionality in the first week after implantation and remained at least 2.1-fold higher during the study. Islets in microcapsules containing collagen IV and RGD survived 211 ± 24.1 days while controls survived 125 ± 19.7 days. Our findings provide in vivo evidence for the efficacy of supplementing immunoisolating devices with specific ECM components to enhance functionality and longevity of islet-grafts in vivo. STATEMENT OF SIGNIFICANCE: Limitations in duration of survival of immunoisolated pancreatic islet grafts is a major obstacle for application of the technology to treat diabetes. Accumulating evidence supports that incorporation of extracellular matrix (ECM) molecules in the capsules enhances longevity of pancreatic islets. After selection of the most efficacious laminin sequence in vitro, we show in vivo that inclusion of collagen IV and RGD in alginate-based microcapsules enhances survival, insulin secretion function, and mitochondrial function. It also suppresses fibrosis by lowering proinflammatory cytokines secretion. Moreover, transcriptomic analysis shows that ECM-inclusion promotes insulin-secretion related pathways and attenuates inflammation and hypoxic stress related pathways in islets. We show that inclusion of ECM in immunoisolating devices is a promising strategy to promote long-term survival of islet-grafts.


Asunto(s)
Diabetes Mellitus , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Ratones , Animales , Laminina/farmacología , Cápsulas , Alginatos/farmacología , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Matriz Extracelular/metabolismo , Diabetes Mellitus/metabolismo , Colágeno Tipo IV/metabolismo , Oligopéptidos/metabolismo , Fibrosis , Aloinjertos/metabolismo
7.
Food Funct ; 13(21): 10870-10881, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36239179

RESUMEN

Encapsulation of food and feed ingredients is commonly applied to avoid the loss of functionality of bioactive food ingredients. Components that are encapsulated are usually sensitive to light, pH, oxygen or highly volatile. Also, encapsulation is also applied for ingredients that might influence taste. Many polymers from natural sources have been tested for encapsulation of foods. In the past few years, pectins have been proposed as emerging broadly applicable encapsulation materials. The reasons are that pectins are versatile and inexpensive, can be tailored to meet specific demands and provide health benefits. Emerging new insight into the chemical structure and related health benefits of pectins opens new avenues to use pectins in food and feed. To provide insight into their application potential, we review the current knowledge on the structural features of different pectins, their production and tailoring process for use in microencapsulation and gelation, and the impact of the pectin structure on health benefits and release properties in the gut, as well as processing technologies for pectin-based encapsulation systems with tailor-made functionalities. This is reviewed in view of application of pectins for microencapsulation of different sensitive food components. Although some critical factors such as tuning of controlled release of cargo in the intestine and the impact of the pectin production process on the molecular structure of pectin still need more study, current insight is that pectins provide many advantages for encapsulation of bioactive food and feed ingredients and are cost-effective.


Asunto(s)
Alimentos , Pectinas , Pectinas/química , Preparaciones de Acción Retardada , Estructura Molecular
8.
Carbohydr Polym ; 277: 118813, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34893230

RESUMEN

Citrus pectins were studied by enzymatic fingerprinting using a simultaneous enzyme treatment with endo-polygalacturonase (endo-PG) from Kluyveromyces fragilis and pectin lyase (PL) from Aspergillus niger to reveal the methyl-ester distribution patterns over the pectin backbone. Using HILIC-MS combined with HPAEC enabled the separation and identification of the diagnostic oligomers released. Structural information on the pectins was provided by using novel descriptive parameters such as degree of blockiness of methyl-esterified oligomers by PG (DBPGme) and degree of blockiness of methyl-esterified oligomers by PL (DBPLme). This approach enabled us to clearly differentiate citrus pectins with various methyl-esterification patterns. The simultaneous use of PG and PL showed additional information, which is not revealed in digests using PG or PL alone. This approach can be valuable to differentiate pectins having the same DM and to get specific structural information on pectins and therefore to be able to better predict their physical and biochemical functionalities.


Asunto(s)
Pectinas/metabolismo , Poligalacturonasa/metabolismo , Polisacárido Liasas/metabolismo , Aspergillus niger/enzimología , Kluyveromyces/enzimología , Pectinas/análisis
9.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502400

RESUMEN

Giardiasis represents a latent problem in public health due to the exceptionally pathogenic strategies of the parasite Giardia lamblia for evading the human immune system. Strains resistant to first-line drugs are also a challenge. Therefore, new antigiardial therapies are urgently needed. Here, we tested giardial arginine deiminase (GlADI) as a target against giardiasis. GlADI belongs to an essential pathway in Giardia for the synthesis of ATP, which is absent in humans. In silico docking with six thiol-reactive compounds was performed; four of which are approved drugs for humans. Recombinant GlADI was used in enzyme inhibition assays, and computational in silico predictions and spectroscopic studies were applied to follow the enzyme's structural disturbance and identify possible effective drugs. Inhibition by modification of cysteines was corroborated using Ellman's method. The efficacy of these drugs on parasite viability was assayed on Giardia trophozoites, along with the inhibition of the endogenous GlADI. The most potent drug against GlADI was assayed on Giardia encystment. The tested drugs inhibited the recombinant GlADI by modifying its cysteines and, potentially, by altering its 3D structure. Only rabeprazole and omeprazole decreased trophozoite survival by inhibiting endogenous GlADI, while rabeprazole also decreased the Giardia encystment rate. These findings demonstrate the potential of GlADI as a target against giardiasis.


Asunto(s)
Giardia lamblia/efectos de los fármacos , Giardiasis/tratamiento farmacológico , Hidrolasas/metabolismo , Animales , Antiprotozoarios/farmacología , Simulación por Computador , Cisteína/química , Evaluación Preclínica de Medicamentos/métodos , Reposicionamiento de Medicamentos/métodos , Giardia lamblia/patogenicidad , Giardiasis/inmunología , Tiomalato Sódico de Oro/farmacología , Humanos , Hidrolasas/efectos de los fármacos , Hidrolasas/ultraestructura , Omeprazol/farmacología , Inhibidores de la Bomba de Protones/farmacología , Rabeprazol , Tiamina/análogos & derivados , Tiamina/farmacología , Trofozoítos/efectos de los fármacos
10.
Mol Nutr Food Res ; 65(19): e2100346, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34369649

RESUMEN

INTRODUCTION: Pectins have anti-inflammatory properties on intestinal immunity through direct interactions on Toll-like receptors (TLRs) in the small intestine or via stimulating microbiota-dependent effects in the large intestine. Both the degree of methyl-esterification (DM) and the distribution of methyl-esters (degree of blockiness; DB) of pectins contribute to this influence on immunity, but whether and how the DB impacts immunity through microbiota-dependent effects in the large intestine is unknown. Therefore, this study tests pectins that structurally differ in DB in a mouse model with Citrobacter rodentium induced colitis and studies the impact on the intestinal microbiota composition and associated attenuation of inflammation. METHODS AND RESULTS: Both low and high DB pectins induce a more rich and diverse microbiota composition. These pectins also lower the bacterial load of C. rodentium in cecal digesta. Through these effects, both low and high DB pectins attenuate C. rodentium induced colitis resulting in reduced intestinal damage, reduced numbers of Th1-cells, which are increased in case of C. rodentium induced colitis, and reduced levels of GATA3+ Tregs, which are related to tissue inflammation. CONCLUSION: Pectins prevent C. rodentium induced colonic inflammation by lowering the C. rodentium load in the caecum independently of the DB.


Asunto(s)
Colitis/tratamiento farmacológico , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Pectinas/química , Pectinas/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Ciego/efectos de los fármacos , Ciego/metabolismo , Citrobacter rodentium/patogenicidad , Citrus sinensis/química , Colitis/microbiología , Colitis/patología , Citocinas/metabolismo , Infecciones por Enterobacteriaceae/patología , Ésteres/química , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Ratones Endogámicos C57BL , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/patología
11.
Mol Nutr Food Res ; 65(18): e2100222, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34268870

RESUMEN

SCOPE: Intestinal mucositis is a common side effect of the chemotherapeutic agent doxorubicin, which is characterized by severe Toll-like receptor (TLR) 2-mediated inflammation. The dietary fiber pectin is shown to prevent this intestinal inflammation through direct inhibition of TLR2 in a microbiota-independent manner. Recent in vitro studies show that inhibition of TLR2 is determined by the number and distribution of methyl-esters of pectins. Therefore, it is hypothesized that the degree of methyl-esterification (DM) and the degree of blockiness (DB) of pectins determine attenuating efficacy on doxorubicin-induced intestinal mucositis. METHODS AND RESULTS: Four structurally different pectins that differed in DM and DB are tested on inhibitory effects on murine TLR2 in vitro, and on doxorubicin-induced intestinal mucositis in mice. These data demonstrate that low DM pectins or intermediate DM pectins with high DB have the strongest inhibitory impact on murine TLR2-1 and the strongest attenuating effect on TLR2-induced apoptosis and peritonitis. Intermediate DM pectin with a low DB is, however, also effective in preventing the induction of doxorubicin-induced intestinal damage. CONCLUSION: These pectin structures with stronger TLR2-inhibiting properties may prevent the development of doxorubicin-induced intestinal damage in patients undergoing chemotherapeutic treatment with doxorubicin.


Asunto(s)
Doxorrubicina/efectos adversos , Intestino Delgado/efectos de los fármacos , Mucositis/inducido químicamente , Mucositis/tratamiento farmacológico , Pectinas/farmacología , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antibióticos Antineoplásicos/efectos adversos , Apoptosis/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Esterificación , Femenino , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/tratamiento farmacológico , Enfermedades Intestinales/patología , Mucosa Intestinal/efectos de los fármacos , Intestino Delgado/patología , Ratones Endogámicos C57BL , Mucositis/patología , Pectinas/administración & dosificación , Pectinas/química , Peritonitis/inducido químicamente , Peritonitis/tratamiento farmacológico , Peritonitis/patología , Relación Estructura-Actividad , Receptor Toll-Like 2/antagonistas & inhibidores , Receptor Toll-Like 2/metabolismo
12.
Food Funct ; 12(17): 8100-8119, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34286788

RESUMEN

Human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) are known to inhibit the adhesion of pathogens to the gut epithelium, but the mechanisms involved are not well understood. Here, the effects of 2'-FL, 3-FL, DP3-DP10, DP10-DP60 and DP30-DP60 inulins and DM7, DM55 and DM69 pectins were studied on pathogen adhesion to Caco-2 cells. As the growth phase influences virulence, E. coli ET8, E. coli LMG5862, E. coli O119, E. coli WA321, and S. enterica subsp. enterica LMG07233 from both log and stationary phases were tested. Specificity for enteric pathogens was tested by including the lung pathogen K. pneumoniae LMG20218. Expression of the cell membrane glycosylation genes of galectin and glycocalyx and inflammatory genes was studied in the presence and absence of 2'-FL or NDCs. Inhibition of pathogen adhesion was observed for 2'-FL, inulins, and pectins. Pre-incubation with 2'-FL downregulated ICAM1, and pectins modified the glycosylation genes. In contrast, K. pneumoniae LMG20218 downregulated the inflammatory genes, but these were restored by pre-incubation with pectins, which reduced the adhesion of K. pneumoniae LMG20218. In addition, DM69 pectin significantly upregulated the inflammatory genes. 2'-FL and pectins but not inulins inhibited pathogen adhesion to the gut epithelial Caco-2 cells through changing the cell membrane glycosylation and inflammatory genes, but the effects were molecule-, pathogen-, and growth phase-dependent.


Asunto(s)
Adhesión Bacteriana , Células Epiteliales/metabolismo , Intestinos/metabolismo , Inulina/metabolismo , Leche Humana/metabolismo , Oligosacáridos/metabolismo , Pectinas/metabolismo , Células CACO-2 , Células Epiteliales/microbiología , Escherichia coli/fisiología , Regulación de la Expresión Génica , Glicosilación , Humanos , Intestinos/microbiología , Klebsiella pneumoniae/fisiología , Leche Humana/química , Salmonella enterica/fisiología
13.
Mater Sci Eng C Mater Biol Appl ; 123: 112009, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33812628

RESUMEN

Different bioinks have been used to produce cell-laden alginate-based hydrogel constructs for cell replacement therapy but some of these approaches suffer from issues with print quality, long-term mechanical instability, and bioincompatibility. In this study, new alginate-based bioinks were developed to produce cell-laden grid-shaped hydrogel constructs with stable integrity and immunomodulating capacity. Integrity and printability were improved by including the co-block-polymer Pluronic F127 in alginate solutions. To reduce inflammatory responses, pectin with a low degree of methylation was included and tested for inhibition of Toll-Like Receptor 2/1 (TLR2/1) dimerization and activation and tissue responses under the skin of mice. The viscoelastic properties of alginate-Pluronic constructs were unaffected by pectin incorporation. The tested pectin protected printed insulin-producing MIN6 cells from inflammatory stress as evidenced by higher numbers of surviving cells within the pectin-containing construct following exposure to a cocktail of the pro-inflammatory cytokines namely, IL-1ß, IFN-γ, and TNF-α. The results suggested that the cell-laden construct bioprinted with pectin-alginate-Pluronic bioink reduced tissue responses via inhibiting TLR2/1 and support insulin-producing ß-cell survival under inflammatory stress. Our study provides a potential novel strategy to improve long-term survival of pancreatic islet grafts for Type 1 Diabetes (T1D) treatment.


Asunto(s)
Bioimpresión , Insulinas , Alginatos , Animales , Ratones , Pectinas , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
14.
Biomaterials ; 266: 120460, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33099059

RESUMEN

Encapsulation of pancreatic islets in alginate-microcapsules is used to reduce or avoid the application of life-long immunosuppression in preventing rejection. Long-term graft function, however, is limited due to varying degrees of host tissue responses against the capsules. Major graft-longevity limiting responses include inflammatory responses provoked by biomaterials and islet-derived danger-associated molecular patterns (DAMPs). This paper reports on a novel strategy for engineering alginate microcapsules presenting immunomodulatory polymer pectin with varying degrees of methyl-esterification (DM) to reduce these host tissue responses. DM18-pectin/alginate microcapsules show a significant decrease of DAMP-induced Toll-Like Receptor-2 mediated immune activation in vitro, and reduce peri-capsular fibrosis in vivo in mice compared to higher DM-pectin/alginate microcapsules and conventional alginate microcapsules. By testing efficacy of DM18-pectin/alginate microcapsules in vivo, we demonstrate that low-DM pectin support long-term survival of xenotransplanted rat islets in diabetic mice. This study provides a novel strategy to attenuate host responses by creating immunomodulatory capsule surfaces that attenuate activation of specific pro-inflammatory immune receptors locally at the transplantation site.


Asunto(s)
Diabetes Mellitus Experimental , Supervivencia de Injerto , Trasplante de Islotes Pancreáticos , Pectinas , Receptor Toll-Like 2 , Alginatos , Animales , Cápsulas , Diabetes Mellitus Experimental/terapia , Xenoinjertos , Inmunidad , Ratones , Polímeros , Ratas
15.
Food Funct ; 11(11): 9445-9467, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33150902

RESUMEN

Human milk (HM) is the gold standard for the nutrition of infants. An important component of HM is human milk oligosaccharides (hMOs), which play an important role in gut microbiota colonization and gut immune barrier establishment, and thereby contribute to the maturation of the immune system in early life. Guiding these processes is important as disturbances have life-long health effects and can lead to the development of allergic diseases. Unfortunately, not all infants can be exclusively fed with HM. These infants are routinely fed with infant formulas that contain hMO analogs and other non-digestible carbohydrates (NDCs) to mimic the effects of hMOs. Currently, the hMO analogs 2'-fucosyllactose (2'-FL), galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), and pectins are added to infant formulas; however, these NDCs cannot mimic all hMO functions and therefore new NDCs and NDC mixtures need to become available for specific groups of neonates like preterm and disease-prone neonates. In this review, we discuss human data on the beneficial effects of infant formula supplements such as the specific hMO analog 2'-FL and NDCs as well as their mechanism of effects like stimulation of microbiota development, maturation of different parts of the gut immune barrier and anti-pathogenic effects. Insights into the structure-specific mechanisms by which hMOs and NDCs exert their beneficial functions might contribute to the development of new tailored NDCs and NDC mixtures. We also describe the needs for new in vitro systems that can be used for research on hMOs and NDCs. The current data suggest that "tailored infant formulas" for infants of different ages and healthy statuses are needed to ensure a healthy development of the microbiota and the gut immune system of infants.


Asunto(s)
Suplementos Dietéticos , Fórmulas Infantiles , Oligosacáridos/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Inmunidad Mucosa/efectos de los fármacos , Fenómenos Fisiológicos Nutricionales del Lactante , Recién Nacido , Oligosacáridos/administración & dosificación , Oligosacáridos/farmacología
16.
Carbohydr Polym ; 249: 116863, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32933690

RESUMEN

Insufficient intake of dietary fibers in Western societies is considered a major contributing factor in the high incidence rates of diabetes. The dietary fiber pectin has been suggested to be beneficial for management of both Diabetes Type 1 and Type 2, but mechanisms and effects of pectin on insulin producing pancreatic ß-cells are unknown. Our study aimed to determine the effects of lemon pectins with different degree of methyl-esterification (DM) on ß-cells under oxidative (streptozotocin) and inflammatory (cytokine) stress and to elucidate the underlying rescuing mechanisms, including effects on galectin-3. We found that specific pectins had rescuing effects on toxin and cytokine induced stress on ß-cells but effects depended on the pectin concentration and DM-value. Protection was more pronounced with low DM5 pectin and was enhanced with higher pectin-concentrations. Our findings show that specific pectins might prevent diabetes by making insulin producing ß-cells less susceptible for stress.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Galectina 3/metabolismo , Inflamación/tratamiento farmacológico , Células Secretoras de Insulina/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Pectinas/farmacología , Sustancias Protectoras/farmacología , Animales , Esterificación , Humanos , Inflamación/etiología , Inflamación/patología , Células Secretoras de Insulina/patología , Metilación , Ratones , Pectinas/química
17.
Exp Mol Med ; 52(9): 1364-1376, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908213

RESUMEN

Pectins are dietary fibers with different structural characteristics. Specific pectin structures can influence the gastrointestinal immune barrier by directly interacting with immune cells or by impacting the intestinal microbiota. The impact of pectin strongly depends on the specific structural characteristics of pectin; for example, the degree of methyl-esterification, acetylation and rhamnogalacturonan I or rhamnogalacturonan II neutral side chains. Here, we review the interactions of specific pectin structures with the gastrointestinal immune barrier. The effects of pectin include strengthening the mucus layer, enhancing epithelial integrity, and activating or inhibiting dendritic cell and macrophage responses. The direct interaction of pectins with the gastrointestinal immune barrier may be governed through pattern recognition receptors, such as Toll-like receptors 2 and 4 or Galectin-3. In addition, specific pectins can stimulate the diversity and abundance of beneficial microbial communities. Furthermore, the gastrointestinal immune barrier may be enhanced by short-chain fatty acids. Moreover, pectins can enhance the intestinal immune barrier by favoring the adhesion of commensal bacteria and inhibiting the adhesion of pathogens to epithelial cells. Current data illustrate that pectin may be a powerful dietary fiber to manage and prevent several inflammatory conditions, but additional human studies with pectin molecules with well-defined structures are urgently needed.


Asunto(s)
Fibras de la Dieta/metabolismo , Mucosa Gástrica/inmunología , Mucosa Gástrica/metabolismo , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Pectinas/química , Pectinas/metabolismo , Animales , Biodiversidad , Microbioma Gastrointestinal/inmunología , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunidad Innata , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/metabolismo , Unión Proteica , Receptores de Reconocimiento de Patrones/metabolismo , Relación Estructura-Actividad
18.
Nutrients ; 12(6)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503178

RESUMEN

Background: Non-digestible carbohydrates are added to infant formula to mimic the effects of human milk oligosaccharide by acting as prebiotics and stimulating the immune system. Although not yet used in infant formulas, ß-glucans are known to have beneficial health effects, and are therefore of potential interest for supplementation. Methods and results: We investigated the in vitro fermentation of native and endo-1,3(4)-ß-glucanase-treated oat ß-glucan using pooled fecal inocula of 2- and 8-week-old infants. While native oat ß-glucan was not utilized, both inocula specifically utilized oat ß-glucan oligomers containing ß(1→4)-linkages formed upon enzyme treatment. The fermentation rate was highest in the fecal microbiota of 2-week-old infants, and correlated with a high lactate production. Fermentation of media supplemented with native and enzyme-treated oat ß-glucans increased the relative abundance of Enterococcus and attenuated pro-inflammatory cytokine production (IL-1ß, IL-6, TNFα) in immature dendritic cells. This attenuating effect was more pronounced after enzyme treatment. This attenuation might result from the enhanced ability of fermented oat ß-glucan to stimulate Dectin-1 receptors. Conclusion: Our findings demonstrate that endo-1,3(4)-ß-glucanase treatment enhances the fermentability of oat ß-glucan and attenuates pro-inflammatory responses. Hence, this study shows that especially enzyme-treated oat ß-glucans have a high potential for supplementation of infant formula.


Asunto(s)
Avena/química , Células Dendríticas/metabolismo , Células Dendríticas/fisiología , Suplementos Dietéticos , Endo-1,3(4)-beta-Glucanasa/farmacología , Heces/microbiología , Fermentación , Microbioma Gastrointestinal/fisiología , Inflamación/metabolismo , Lectinas Tipo C/metabolismo , beta-Glucanos/farmacología , Citocinas/metabolismo , Humanos , Técnicas In Vitro , Recién Nacido , Mediadores de Inflamación/metabolismo
19.
Sci Rep ; 10(1): 1690, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015377

RESUMEN

Dietary fibers have been shown to exert immune effects via interaction with pattern recognition receptors (PRR) such as toll-like receptors (TLR) and nucleotide-binding oligomerization domain (NOD)-like receptors. Pectin is a dietary fiber that interacts with PRR depending on its chemical structure. Papaya pectin retains different chemical structures at different ripening stages. How this influence PRR signaling is unknown. The aim of this work was to determine how ripening influences pectin structures and their ability to interact with TLR2, 3, 4, 5 and 9, and NOD1 and 2. It was evaluated the interaction of the water-soluble fractions rich in pectin extracted from unripe to ripe papayas. The pectin extracted from ripe papayas activated all the TLR and, to a lesser extent, the NOD receptors. The pectin extracted from unripe papayas also activated TLR2, 4 and 5 but inhibited the activation of TLR3 and 9. The differences in pectin structures are the higher methyl esterification and smaller galacturonan chains of pectin from ripe papayas. Our finding might lead to selection of ripening stages for tailored modulation of PRR to support or attenuate immunity.


Asunto(s)
Carica/metabolismo , Pectinas/metabolismo , Receptores Inmunológicos/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Fibras de la Dieta/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal/fisiología , Receptores Toll-Like/metabolismo
20.
Xenotransplantation ; 27(1): e12555, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31532037

RESUMEN

BACKGROUND: Necroptosis has been demonstrated to be a primary mechanism of islet cell death. This study evaluated whether the supplementation of necrostatin-1 (Nec-1), a potent inhibitor of necroptosis, to islet culture media could improve the recovery, maturation, and function of pre-weaned porcine islets (PPIs). METHODS: PPIs were isolated from pre-weaned Yorkshire piglets (8-15 days old) and either cultured in control islet culture media (n = 6) or supplemented with Nec-1 (100 µM, n = 5). On days 3 and 7 of culture, islets were assessed for recovery, insulin content, viability, cellular composition, GLUT2 expression in beta cells, differentiation of pancreatic endocrine progenitor cells, function, and oxygen consumption rate. RESULTS: Nec-1 supplementation induced a 2-fold increase in the insulin content of PPIs on day 7 of culture. When compared to untreated islets, Nec-1 treatment doubled the beta- and alpha-cell composition and accelerated the development of delta cells. Additionally, beta cells of Nec-1-treated islets had a significant upregulation in GLUT2 expression. The enhanced development of major endocrine cells and GLUT2 expression after Nec-1 treatment subsequently led to a significant increase in the amount of insulin secreted in response to in vitro glucose challenge. Islet recovery, viability, and oxygen consumption rate were unaffected by Nec-1. CONCLUSION: This study underlines the importance of necroptosis in islet cell death after isolation and demonstrates the novel effects of Nec-1 to increase islet insulin content, enhance pancreatic endocrine cell development, facilitate GLUT2 upregulation in beta cells, and augment insulin secretion. Nec-1 supplementation to culture media significantly improves islet quality prior to xenotransplantation.


Asunto(s)
Separación Celular/métodos , Transportador de Glucosa de Tipo 2/metabolismo , Imidazoles/metabolismo , Indoles/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/fisiología , Animales , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Suplementos Dietéticos , Transportador de Glucosa de Tipo 2/genética , Humanos , Insulina/metabolismo , Necroptosis , Consumo de Oxígeno , Porcinos , Trasplante Heterólogo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA