Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Theor Appl Genet ; 137(4): 79, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472376

RESUMEN

KEY MESSAGE: Multiple QTLs control unreduced pollen production in potato. Two major-effect QTLs co-locate with mutant alleles of genes with homology to AtJAS, a known regulator of meiotic spindle orientation. In diploid potato the production of unreduced gametes with a diploid (2n) rather than a haploid (n) number of chromosomes has been widely reported. Besides their evolutionary important role in sexual polyploidisation, unreduced gametes also have a practical value for potato breeding as a bridge between diploid and tetraploid germplasm. Although early articles argued for a monogenic recessive inheritance, the genetic basis of unreduced pollen production in potato has remained elusive. Here, three diploid full-sib populations were genotyped with an amplicon sequencing approach and phenotyped for unreduced pollen production across two growing seasons. We identified two minor-effect and three major-effect QTLs regulating this trait. The two QTLs with the largest effect displayed a recessive inheritance and an additive interaction. Both QTLs co-localised with genes encoding for putative AtJAS homologs, a key regulator of meiosis II spindle orientation in Arabidopsis thaliana. The function of these candidate genes is consistent with the cytological phenotype of mis-oriented metaphase II plates observed in the parental clones. The alleles associated with elevated levels of unreduced pollen showed deleterious mutation events: an exonic transposon insert causing a premature stop, and an amino acid change within a highly conserved domain. Taken together, our findings shed light on the natural variation underlying unreduced pollen production in potato and will facilitate interploidy breeding by enabling marker-assisted selection for this trait.


Asunto(s)
Arabidopsis , Solanum tuberosum , Fitomejoramiento , Polen/genética , Genotipo , Arabidopsis/genética , Meiosis
2.
Genetics ; 226(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37943687

RESUMEN

The balanced segregation of homologous chromosomes during meiosis is essential for fertility and is mediated by crossovers (COs). A strong reduction of CO number leads to the unpairing of homologous chromosomes after the withdrawal of the synaptonemal complex. This results in the random segregation of univalents during meiosis I and ultimately to the production of unbalanced and sterile gametes. However, if CO shortage is combined with another meiotic alteration that restitutes the first meiotic division, then uniform and balanced unreduced male gametes, essentially composed of nonrecombinant homologs, are produced. This mitosis-like division is of interest to breeders because it transmits most of the parental heterozygosity to the gametes. In potato, CO shortage, a recessive trait previously referred to as desynapsis, was tentatively mapped to chromosome 8. In this article, we have fine-mapped the position of the CO shortage locus and identified StMSH4, an essential component of the class I CO pathway, as the most likely candidate gene. A 7 base-pair insertion in the second exon of StMSH4 was found to be associated with CO shortage in our mapping population. We also identified a second allele with a 3,820 base-pair insertion and confirmed that both alleles cannot complement each other. Such nonfunctional alleles appear to be common in potato cultivars. More than half of the varieties we tested are carriers of mutational load at the StMSH4 locus. With this new information, breeders can choose to remove alleles associated with CO shortage from their germplasm to improve fertility or to use them to produce highly uniform unreduced male gametes in alternative breeding schemes.


Asunto(s)
Infertilidad , Solanum tuberosum , Alelos , Solanum tuberosum/genética , Fitomejoramiento , Meiosis/genética , Polen/genética , Infertilidad/genética
3.
Mol Plant ; 15(3): 520-536, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35026436

RESUMEN

Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity, including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome, which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts. As a clonally propagated autotetraploid that undergoes limited meiosis, dysfunctional and deleterious alleles are not purged in tetraploid potato. Nearly a quarter of the loci bore mutations are predicted to have a high negative impact on protein function, complicating breeder's efforts to reduce genetic load. The StCDF1 locus controls maturity, and analysis of six tetraploid genomes revealed that 12 allelic variants of StCDF1 are correlated with maturity in a dosage-dependent manner. Knowledge of the complexity of the tetraploid potato genome with its rampant structural variation and embedded deleterious and dysfunctional alleles will be key not only to implementing precision breeding of tetraploid cultivars but also to the construction of homozygous, diploid potato germplasm containing favorable alleles to capitalize on heterosis in F1 hybrids.


Asunto(s)
Solanum tuberosum , Tetraploidía , Alelos , Cromosomas , Fitomejoramiento , Proteoma/genética , Solanum tuberosum/genética , Transcriptoma/genética
4.
Theor Appl Genet ; 133(12): 3419-3439, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32918590

RESUMEN

KEY MESSAGE: Two novel major effect loci (Sen4 and Sen5) and several minor effect QTLs for potato wart disease resistance have been mapped. The importance of minor effect loci to bring full resistance to wart disease was investigated. Using the newly identified and known wart disease resistances, a panel of potato breeding germplasm and Solanum wild species was screened. This provided a state-of-the-art "hitch-hikers-guide" of complementary wart disease resistance sources. Potato wart disease, caused by the obligate biotrophic soil-born fungus Synchytrium endobioticum, is the most important quarantine disease of potato. Because of its huge impact on yield, the lack of chemical control and the formation of resting spores with long viability, breeding for resistant varieties combined with strict quarantine measures are the only way to efficiently and durably manage the disease. In this study, we set out to make an inventory of the different resistance sources. Using a Genome-Wide Association Study (GWAS) in the potato breeding genepool, we identified Sen4, associated with pathotypes 2, 6 and 18 resistance. Associated SNPs mapped to the south arm of chromosome 12 and were validated to be linked to resistance in one full-sib population. Also, a bulked segregant analysis combined with a Comparative Subsequence Sets Analysis (CoSSA) resulted in the identification of Sen5, associated with pathotypes 2, 6 and 18 resistance, on the south arm of chromosome 5. In addition to these two major effect loci, the GWAS and CoSSA allowed the identification of several quantitative trait loci necessary to bring full resistance to certain pathotypes. Panels of varieties and Solanum accessions were screened for the presence of Sen1, Sen2, Sen3, Sen4 and Sen5. Combined with pedigree analysis, we could trace back some of these genes to the ancestral resistance donors. This analysis revealed complementary resistance sources and allows elimination of redundancy in wart resistance breeding programs.


Asunto(s)
Cromosomas de las Plantas/genética , Quitridiomicetos/fisiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Solanum tuberosum/genética , Mapeo Cromosómico/métodos , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología
5.
Theor Appl Genet ; 133(9): 2713-2728, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32514711

RESUMEN

Self-compatible (SC) diploid potatoes allow innovative potato breeding. Therefore, the Sli gene, originally described in S. chacoense, has received much attention. In elite S. tuberosum diploids, spontaneous berry set is occasionally observed. We aimed to map SC from S. tuberosum origin. Two full-sib mapping populations from non-inbred diploids were used. Bulks were composed based on both pollen tube growth and berry set upon selfing. After DNA sequencing of the parents and bulks, we generated k-mer tables. Set algebra and depth filtering were used to identify bulk-specific k-mers. Coupling and repulsion phase k-mers, transmitted from the SC parent, mapped in both populations to the distal end of chromosome 12. Intersection between the k-mers from both populations, in coupling phase with SC, exposed a shared haplotype of approximately 1.5 Mb. Subsequently, we screened read archives of potatoes and wild relatives for k-mers specific to this haplotype. The well-known SC clones US-W4 and RH89-039-16, but surprisingly, also S. chacoense clone M6 were positives. Hence, the S. tuberosum source of SC seems identical to Sli. Furthermore, the candidate region drastically reduced to 333 kb. Haplotype-specific KASP markers were designed and validated on a panel of diploid clones including another renown SC dihaploid G254. Interestingly, k-mers specific to the SC haplotype were common in tetraploid varieties. Pedigree information suggests that the SC haplotype was introduced into tetraploid varieties via the founder "Rough Purple Chili". We show that Sli is surprisingly widespread and indigenous to the cultivated gene pool of potato.


Asunto(s)
Genética de Población , Fitomejoramiento , Solanum tuberosum/genética , Mapeo Cromosómico , Diploidia , Pool de Genes , Genes de Plantas , Marcadores Genéticos , Genotipo , Haplotipos , Fenotipo , Tubo Polínico/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple
6.
Theor Appl Genet ; 133(6): 1859-1871, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32043234

RESUMEN

KEY MESSAGE: A Genome-Wide Association Study using 330 commercial potato varieties identified haplotype specific SNP markers associated with pathotype 1(D1) wart disease resistance. Synchytrium endobioticum is a soilborne obligate biotrophic fungus responsible for wart disease. Growing resistant varieties is the most effective way to manage the disease. This paper addresses the challenge to apply molecular markers in potato breeding. Although markers linked to Sen1 were published before, the identification of haplotype-specific single-nucleotide polymorphisms may result in marker assays with high diagnostic value. To identify hs-SNP markers, we performed a genome-wide association study (GWAS) in a panel of 330 potato varieties representative of the commercial potato gene pool. SNP markers significantly associated with pathotype 1 resistance were identified on chromosome 11, at the position of the previously identified Sen1 locus. Haplotype specificity of the SNP markers was examined through the analysis of false positives and false negatives and validated in two independent full-sib populations. This paper illustrates why it is not always feasible to design markers without false positives and false negatives for marker-assisted selection. In the case of Sen1, founders could not be traced because of a lack of identity by descent and because of the decay of linkage disequilibrium between Sen1 and flanking SNP markers. Sen1 appeared to be the main source of pathotype 1 resistance in potato varieties, but it does not explain all the resistance observed. Recombination and introgression breeding may have introduced new, albeit rare haplotypes involved in pathotype 1 resistance. The GWAS approach, in such case, is instrumental to identify SNPs with the best possible diagnostic value for marker-assisted breeding.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Solanum tuberosum/genética , Cromosomas de las Plantas , Quitridiomicetos/patogenicidad , Genes de Plantas , Estudios de Asociación Genética , Marcadores Genéticos , Haplotipos , Desequilibrio de Ligamiento , Repeticiones de Microsatélite , Fenotipo , Sitios de Carácter Cuantitativo , Solanum tuberosum/microbiología
8.
Theor Appl Genet ; 130(3): 515-528, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27872942

RESUMEN

KEY MESSAGE: The method of graphical genotyping is applied to a panel of tetraploid potato cultivars to visualize haplotype sharing. The method allowed to map genes involved in virus and nematode resistance. The physical coordinates of the amount of linkage drag surrounding these genes are easily interpretable. Graphical genotyping is a visually attractive and easily interpretable method to represent genetic marker data. In this paper, the method is extended from diploids to a panel of tetraploid potato cultivars. Application of filters to select a subset of SNPs allows one to visualize haplotype sharing between individuals that also share a specific locus. The method is illustrated with cultivars resistant to Potato virus Y (PVY), while simultaneously selecting for the absence of the SNPs in susceptible clones. SNP data will then merge into an image which displays the coordinates of a distal genomic region on the northern arm of chromosome 11 where a specific haplotype is introgressed from the wild potato species S. stoloniferum (CPC 2093) carrying a gene (Ny (o,n)sto ) conferring resistance to two PVY strains, PVYO and PVYNTN. Graphical genotyping was also successful in showing the haplotypes on chromosome 12 carrying Ry-f sto , another resistance gene derived from S. stoloniferum conferring broad-spectrum resistance to PVY, as well as chromosome 5 haplotypes from S. vernei, with the Gpa5 locus involved in resistance against Globodera pallida cyst nematodes. The image also shows shortening of linkage drag by meiotic recombination of the introgression segment in more recent breeding material. Identity-by-descent was found to be a requirement for using graphical genotyping, which is proposed as a non-statistical alternative method for gene discovery, as compared with genome-wide association studies. The potential and limitations of the method are discussed.


Asunto(s)
Mapeo Cromosómico/métodos , Técnicas de Genotipaje , Solanum tuberosum/genética , Tetraploidía , Animales , ADN de Plantas/genética , Resistencia a la Enfermedad/genética , Estudios de Asociación Genética , Marcadores Genéticos , Haplotipos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/virología , Polimorfismo de Nucleótido Simple , Potyvirus , Solanum tuberosum/parasitología , Solanum tuberosum/virología , Tylenchoidea
9.
Theor Appl Genet ; 130(1): 123-135, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27699464

RESUMEN

KEY MESSAGE: The number of SNPs required for QTL discovery is justified by the distance at which linkage disequilibrium has decayed. Simulations and real potato SNP data showed how to estimate and interpret LD decay. The magnitude of linkage disequilibrium (LD) and its decay with genetic distance determine the resolution of association mapping, and are useful for assessing the desired numbers of SNPs on arrays. To study LD and LD decay in tetraploid potato, we simulated autotetraploid genotypes and used it to explore the dependence on: (1) the number of haplotypes in the population (the amount of genetic variation) and (2) the percentage of haplotype specific SNPs (hs-SNPs). Several estimators for short-range LD were explored, such as the average r 2, median r 2, and other percentiles of r 2 (80, 90, and 95 %). For LD decay, we looked at LD½,90, the distance at which the short-range LD is halved when using the 90 % percentile of r 2 at short range, as estimator for LD. Simulations showed that the performance of various estimators for LD decay strongly depended on the number of haplotypes, although the real value of LD decay was not influenced very much by this number. The estimator LD½,90 was chosen to evaluate LD decay in 537 tetraploid varieties. LD½,90 values were 1.5 Mb for varieties released before 1945 and 0.6 Mb in varieties released after 2005. LD½,90 values within three different subpopulations ranged from 0.7 to 0.9 Mb. LD½,90 was 2.5 Mb for introgressed regions, indicating large haplotype blocks. In pericentromeric heterochromatin, LD decay was negligible. This study demonstrates that several related factors influencing LD decay could be disentangled, that no universal approach can be suggested, and that the estimation of LD decay has to be performed with great care and knowledge of the sampled material.


Asunto(s)
Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Solanum tuberosum/genética , Tetraploidía , Frecuencia de los Genes , Genética de Población , Genotipo , Haplotipos , Modelos Genéticos
10.
Theor Appl Genet ; 128(12): 2387-401, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26263902

RESUMEN

KEY MESSAGE: A 20K SNP array was developed and a comprehensive set of tetraploid cultivar was genotyped. This allowed us to identify footprints of the breeding history in contemporary breeding material such as identification of introgression segments, selection and founder signatures. A non-redundant subset of 15,138 previously identified SNPs and 4454 SNPs originating from the SolCAP project were combined into a 20k Infinium SNP array for genotyping a total of 569 potato genotypes. In this study we describe how this SNP array (encoded SolSTW array) was designed and analysed with fitTetra, software designed for autotetraploids. Genotypes from different countries and market segments, complemented with historic cultivars and important progenitors, were genotyped. This comprehensive set of genotypes combined with the deliberate inclusion of a large proportion of SNPs with a low minor allele frequency allowed us to distinguish genetic variation contributed by introgression breeding. This "new" (post 1945) genetic variation is located on specific chromosomal regions and enables the identification of SNP markers linked to R-genes. In addition, when the genetic composition of modern cultivars was compared with cultivars released before 1945, it appears that 96% of the genetic variants present in those ancestral cultivars remains polymorphic in modern cultivars. Hence, genetic erosion is almost absent in potato. Finally, we studied population genetic processes shaping the genetic composition of the modern European potato including drift, selection and founder effects. This resulted in the identification of major founders contributing to contemporary germplasm.


Asunto(s)
Mapeo Cromosómico , Análisis de Secuencia por Matrices de Oligonucleótidos , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Solanum tuberosum/genética , ADN de Plantas/genética , Frecuencia de los Genes , Pool de Genes , Marcadores Genéticos , Genética de Población , Genoma de Planta , Genotipo
11.
BMC Genomics ; 16: 374, 2015 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-25958312

RESUMEN

BACKGROUND: In flowering plants it has been shown that de novo genome assemblies of different species and genera show a significant drop in the proportion of alignable sequence. Within a plant species, however, it is assumed that different haplotypes of the same chromosome align well. In this paper we have compared three de novo assemblies of potato chromosome 5 and report on the sequence variation and the proportion of sequence that can be aligned. RESULTS: For the diploid potato clone RH89-039-16 (RH) we produced two linkage phase controlled and haplotype-specific assemblies of chromosome 5 based on BAC-by-BAC sequencing, which were aligned to each other and compared to the 52 Mb chromosome 5 reference sequence of the doubled monoploid clone DM 1-3 516 R44 (DM). We identified 17.0 Mb of non-redundant sequence scaffolds derived from euchromatic regions of RH and 38.4 Mb from the pericentromeric heterochromatin. For 32.7 Mb of the RH sequences the correct position and order on chromosome 5 was determined, using genetic markers, fluorescence in situ hybridisation and alignment to the DM reference genome. This ordered fraction of the RH sequences is situated in the euchromatic arms and in the heterochromatin borders. In the euchromatic regions, the sequence collinearity between the three chromosomal homologs is good, but interruption of collinearity occurs at nine gene clusters. Towards and into the heterochromatin borders, absence of collinearity due to structural variation was more extensive and was caused by hemizygous and poorly aligning regions of up to 450 kb in length. In the most central heterochromatin, a total of 22.7 Mb sequence from both RH haplotypes remained unordered. These RH sequences have very few syntenic regions and represent a non-alignable region between the RH and DM heterochromatin haplotypes of chromosome 5. CONCLUSIONS: Our results show that among homologous potato chromosomes large regions are present with dramatic loss of sequence collinearity. This stresses the need for more de novo reference assemblies in order to capture genome diversity in this crop. The discovery of three highly diverged pericentric heterochromatin haplotypes within one species is a novelty in plant genome analysis. The possible origin and cytogenetic implication of this heterochromatin haplotype diversity are discussed.


Asunto(s)
Cromosomas de las Plantas , Eucromatina/genética , Heterocromatina/genética , Solanum tuberosum/genética , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Eucromatina/metabolismo , Ligamiento Genético , Genotipo , Haplotipos , Heterocromatina/metabolismo , Hibridación Fluorescente in Situ , Polimorfismo Genético
12.
Mol Genet Genomics ; 289(6): 1307-19, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25106953

RESUMEN

One of the most powerful technologies in unraveling the organization of a eukaryotic plant genome is high-resolution Fluorescent in situ hybridization of repeats and single copy DNA sequences on pachytene chromosomes. This technology allows the integration of physical mapping information with chromosomal positions, including centromeres, telomeres, nucleolar-organizing region, and euchromatin and heterochromatin. In this report, we established chromosomal positions of different repeat fractions of the potato genomic DNA (Cot100, Cot500 and Cot1000) on the chromosomes. We also analysed various repeat elements that are unique to potato including the moderately repetitive P5 and REP2 elements, where the REP2 is part of a larger Gypsy-type LTR retrotransposon and cover most chromosome regions, with some brighter fluorescing spots in the heterochromatin. The most abundant tandem repeat is the potato genomic repeat 1 that covers subtelomeric regions of most chromosome arms. Extensive multiple alignments of these repetitive sequences in the assembled RH89-039-16 potato BACs and the draft assembly of the DM1-3 516 R44 genome shed light on the conservation of these repeats within the potato genome. The consensus sequences thus obtained revealed the native complete transposable elements from which they were derived.


Asunto(s)
Cromosomas de las Plantas , ADN de Plantas/química , Genoma de Planta , Solanum tuberosum/genética , Secuencia de Bases , Secuencia de Consenso , Mapeo Físico de Cromosoma , Secuencias Repetitivas de Ácidos Nucleicos , Retroelementos , Secuencias Repetidas en Tándem
13.
Theor Appl Genet ; 127(3): 731-48, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24408376

RESUMEN

Nineteen tuber quality traits in potato were phenotyped in 205 cultivars and 299 breeder clones. Association analysis using 3364 AFLP loci and 653 SSR-alleles identified QTL for these traits. Two association mapping panels were analysed for marker-trait associations to identify quantitative trait loci (QTL). The first panel comprised 205 historical and contemporary tetraploid potato cultivars that were phenotyped in field trials at two locations with two replicates (the academic panel). The second panel consisted of 299 potato cultivars and included recent breeds obtained from five Dutch potato breeding companies and reference cultivars (the industrial panel). Phenotypic data for the second panel were collected during subsequent clonal selection generations at the individual breeding companies. QTL were identified for 19 agro-morphological and quality traits. Two association mapping models were used: a baseline model without, and a more advanced model with correction for population structure and genetic relatedness. Correction for population structure and genetic relatedness was performed with a kinship matrix estimated from marker information. The detected QTL partly not only confirmed previous studies, e.g. for tuber shape and frying colour, but also new QTL were found like for after baking darkening and enzymatic browning. Pleiotropic effects could be discerned for several QTL.


Asunto(s)
Marcadores Genéticos , Fenotipo , Sitios de Carácter Cuantitativo , Solanum tuberosum/genética , Alelos , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Cruzamiento , Mapeo Cromosómico , Interacción Gen-Ambiente , Repeticiones de Microsatélite , Tetraploidía
14.
PLoS One ; 8(5): e62355, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667470

RESUMEN

Assessment of genomic DNA sequence variation and genotype calling in autotetraploids implies the ability to distinguish among five possible alternative allele copy number states. This study demonstrates the accuracy of genotyping-by-sequencing (GBS) of a large collection of autotetraploid potato cultivars using next-generation sequencing. It is still costly to reach sufficient read depths on a genome wide scale, across the cultivated gene pool. Therefore, we enriched cultivar-specific DNA sequencing libraries using an in-solution hybridisation method (SureSelect). This complexity reduction allowed to confine our study to 807 target genes distributed across the genomes of 83 tetraploid cultivars and one reference (DM 1-3 511). Indexed sequencing libraries were paired-end sequenced in 7 pools of 12 samples using Illumina HiSeq2000. After filtering and processing the raw sequence data, 12.4 Gigabases of high-quality sequence data was obtained, which mapped to 2.1 Mb of the potato reference genome, with a median average read depth of 63× per cultivar. We detected 129,156 sequence variants and genotyped the allele copy number of each variant for every cultivar. In this cultivar panel a variant density of 1 SNP/24 bp in exons and 1 SNP/15 bp in introns was obtained. The average minor allele frequency (MAF) of a variant was 0.14. Potato germplasm displayed a large number of relatively rare variants and/or haplotypes, with 61% of the variants having a MAF below 0.05. A very high average nucleotide diversity (π = 0.0107) was observed. Nucleotide diversity varied among potato chromosomes. Several genes under selection were identified. Genotyping-by-sequencing results, with allele copy number estimates, were validated with a KASP genotyping assay. This validation showed that read depths of ∼60-80× can be used as a lower boundary for reliable assessment of allele copy number of sequence variants in autotetraploids. Genotypic data were associated with traits, and alleles strongly influencing maturity and flesh colour were identified.


Asunto(s)
Variación Genética , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Solanum tuberosum/genética , Tetraploidía , Frecuencia de los Genes , Biblioteca de Genes , Genotipo , Heterocigoto
15.
Nature ; 495(7440): 246-50, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23467094

RESUMEN

Potato (Solanum tuberosum L.) originates from the Andes and evolved short-day-dependent tuber formation as a vegetative propagation strategy. Here we describe the identification of a central regulator underlying a major-effect quantitative trait locus for plant maturity and initiation of tuber development. We show that this gene belongs to the family of DOF (DNA-binding with one finger) transcription factors and regulates tuberization and plant life cycle length, by acting as a mediator between the circadian clock and the StSP6A mobile tuberization signal. We also show that natural allelic variants evade post-translational light regulation, allowing cultivation outside the geographical centre of origin of potato. Potato is a member of the Solanaceae family and is one of the world's most important food crops. This annual plant originates from the Andean regions of South America. Potato develops tubers from underground stems called stolons. Its equatorial origin makes potato essentially short-day dependent for tuberization and potato will not make tubers in the long-day conditions of spring and summer in the northern latitudes. When introduced in temperate zones, wild material will form tubers in the course of the autumnal shortening of day-length. Thus, one of the first selected traits in potato leading to a European potato type is likely to have been long-day acclimation for tuberization. Potato breeders can exploit the naturally occurring variation in tuberization onset and life cycle length, allowing varietal breeding for different latitudes, harvest times and markets.


Asunto(s)
Agricultura , Alelos , Variación Genética/genética , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/genética , Aclimatación , Arabidopsis , Cromosomas de las Plantas/genética , Relojes Circadianos/fisiología , Relojes Circadianos/efectos de la radiación , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/efectos de la radiación , Europa (Continente) , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Luz , Datos de Secuencia Molecular , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/efectos de la radiación , Solanum tuberosum/efectos de la radiación , América del Sur , Factores de Tiempo
16.
BMC Genomics ; 12: 594, 2011 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-22142254

RESUMEN

BACKGROUND: Potato is the world's third most important food crop, yet cultivar improvement and genomic research in general remain difficult because of the heterozygous and tetraploid nature of its genome. The development of physical map resources that can facilitate genomic analyses in potato has so far been very limited. Here we present the methods of construction and the general statistics of the first two genome-wide BAC physical maps of potato, which were made from the heterozygous diploid clone RH89-039-16 (RH). RESULTS: First, a gel electrophoresis-based physical map was made by AFLP fingerprinting of 64478 BAC clones, which were aligned into 4150 contigs with an estimated total length of 1361 Mb. Screening of BAC pools, followed by the KeyMaps in silico anchoring procedure, identified 1725 AFLP markers in the physical map, and 1252 BAC contigs were anchored the ultradense potato genetic map. A second, sequence-tag-based physical map was constructed from 65919 whole genome profiling (WGP) BAC fingerprints and these were aligned into 3601 BAC contigs spanning 1396 Mb. The 39733 BAC clones that overlap between both physical maps provided anchors to 1127 contigs in the WGP physical map, and reduced the number of contigs to around 2800 in each map separately. Both physical maps were 1.64 times longer than the 850 Mb potato genome. Genome heterozygosity and incomplete merging of BAC contigs are two factors that can explain this map inflation. The contig information of both physical maps was united in a single table that describes hybrid potato physical map. CONCLUSIONS: The AFLP physical map has already been used by the Potato Genome Sequencing Consortium for sequencing 10% of the heterozygous genome of clone RH on a BAC-by-BAC basis. By layering a new WGP physical map on top of the AFLP physical map, a genetically anchored genome-wide framework of 322434 sequence tags has been created. This reference framework can be used for anchoring and ordering of genomic sequences of clone RH (and other potato genotypes), and opens the possibility to finish sequencing of the RH genome in a more efficient way via high throughput next generation approaches.


Asunto(s)
Cromosomas Artificiales Bacterianos , Genoma , Heterocigoto , Solanum tuberosum/genética , Genes de Plantas
17.
Theor Appl Genet ; 121(6): 1151-70, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20563789

RESUMEN

Association mapping is considered to be an important alternative strategy for the identification of quantitative trait loci (QTL) as compared to traditional QTL mapping. A necessary prerequisite for association analysis to succeed is detailed information regarding hidden population structure and the extent of linkage disequilibrium. A collection of 430 tetraploid potato cultivars, comprising two association panels, has been analysed with 41 AFLP(®) and 53 SSR primer combinations yielding 3364 AFLP fragments and 653 microsatellite alleles, respectively. Polymorphism information content values and detected number of alleles for the SSRs studied illustrate that commercial potato germplasm seems to be equally diverse as Latin American landrace material. Genome-wide linkage disequilibrium (LD)-reported for the first time for tetraploid potato-was observed up to approximately 5 cM using r (2) higher than 0.1 as a criterion for significant LD. Within-group LD, however, stretched on average twice as far when compared to overall LD. A Bayesian approach, a distance-based hierarchical clustering approach as well as principal coordinate analysis were adopted to enquire into population structure. Groups differing in year of market release and market segment (starch, processing industry and fresh consumption) were repeatedly detected. The observation of LD up to 5 cM is promising because the required marker density is not likely to disable the possibilities for association mapping research in tetraploid potato. Population structure appeared to be weak, but strong enough to demand careful modelling of genetic relationships in subsequent marker-trait association analyses. There seems to be a good chance that linkage-based marker-trait associations can be identified at moderate marker densities.


Asunto(s)
Desequilibrio de Ligamiento , Poliploidía , Solanum tuberosum/genética , Alelos , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Teorema de Bayes , Biomarcadores , Análisis por Conglomerados , Repeticiones de Microsatélite , Fenotipo , Polimorfismo Genético , Sitios de Carácter Cuantitativo
18.
Plant Mol Biol ; 73(6): 659-71, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20490894

RESUMEN

We have investigated the genetics and molecular biology of orange flesh colour in potato (Solanum tuberosum L.). To this end the natural diversity in three genes of the carotenoid pathway was assessed by SNP analyses. Association analysis was performed between SNP haplotypes and flesh colour phenotypes in diploid and tetraploid potato genotypes. We observed that among eleven beta-carotene hydroxylase 2 (Chy2) alleles only one dominant allele has a major effect, changing white into yellow flesh colour. In contrast, none of the lycopene epsilon cyclase (Lcye) alleles seemed to have a large effect on flesh colour. Analysis of zeaxanthin epoxidase (Zep) alleles showed that all (diploid) genotypes with orange tuber flesh were homozygous for one specific Zep allele. This Zep allele showed a reduced level of expression. The complete genomic sequence of the recessive Zep allele, including the promoter, was determined, and compared with the sequence of other Zep alleles. The most striking difference was the presence of a non-LTR retrotransposon sequence in intron 1 of the recessive Zep allele, which was absent in all other Zep alleles investigated. We hypothesise that the presence of this large sequence in intron 1 caused the lower expression level, resulting in reduced Zep activity and accumulation of zeaxanthin. Only genotypes combining presence of the dominant Chy2 allele with homozygosity for the recessive Zep allele produced orange-fleshed tubers that accumulated large amounts of zeaxanthin.


Asunto(s)
Carotenoides/biosíntesis , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Xantófilas/metabolismo , Alelos , Vías Biosintéticas , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/enzimología , Tubérculos de la Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Solanum tuberosum/enzimología , Solanum tuberosum/genética , Zeaxantinas
19.
Theor Appl Genet ; 121(1): 117-25, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20204320

RESUMEN

Despite efforts to control late blight in potatoes by introducing R(pi)-genes from wild species into cultivated potato, there are still concerns regarding the durability and level of resistance. Pyramiding R(pi)-genes can be a solution to increase both durability and level of resistance. In this study, two resistance genes, R(Pi-mcd1) and R(Pi-ber), introgressed from the wild tuber-bearing potato species Solanum microdontum and S. berthaultii were combined in a diploid S. tuberosum population. Individual genotypes from this population were classified after four groups, carrying no R(pi)-gene, with only R (Pi-mcd1), with only R(Pi-ber), and a group with the pyramided R(Pi-mcd1) and R (Pi-ber) by means of tightly linked molecular markers. The levels of resistance between the groups were compared in a field experiment in 2007. The group with R(Pi-mcd1) showed a significant delay to reach 50% infection of the leaf area of 3 days. The group with R ( Pi-ber ) showed a delay of 3 weeks. The resistance level in the pyramid group suggested an additive effect of R (Pi-mcd1) with R(Pi-ber). This suggests that potato breeding can benefit from combining individual R(pi)-genes, irrespective of the weak effect of R(Pi-mcd1) or the strong effect of R(Pi-ber).


Asunto(s)
Genes de Plantas , Inmunidad Innata/genética , Phytophthora infestans/inmunología , Enfermedades de las Plantas , Solanum tuberosum , Cruzamiento , Productos Agrícolas/genética , Productos Agrícolas/microbiología , ADN de Plantas/genética , Ligamiento Genético , Marcadores Genéticos , Datos de Secuencia Molecular , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Solanum tuberosum/genética , Solanum tuberosum/microbiología
20.
Theor Appl Genet ; 119(8): 1477-87, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19816672

RESUMEN

Resistance to Globodera pallida Rookmaker (Pa3), originating from wild species Solanum tarijense was identified by QTL analysis and can be largely ascribed to one major QTL. GpaXI ( tar ) ( l ) explained 81.3% of the phenotypic variance in the disease test. GpaXI ( tar ) ( l ) is mapped to the long arm of chromosome 11. Another minor QTL explained 5.3% of the phenotypic variance and mapped to the long arm of chromosome 9. Clones containing both QTL showed no lower cyst counts than clones with only GpaXI ( tar ) ( l ) . After Mendelising the phenotypic data, GpaXI ( tar ) ( l ) could be more precisely mapped near markers GP163 and FEN427, thus anchoring GpaXI ( tar ) ( l ) to a region with a known R-gene cluster containing virus and nematode resistance genes.


Asunto(s)
Cromosomas de las Plantas , Nematodos/fisiología , Solanum/genética , Animales , Mapeo Cromosómico , Familia de Multigenes , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA