Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Radiother Oncol ; 94(3): 359-66, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20060186

RESUMEN

PURPOSE: To correct megavoltage cone-beam CT (MVCBCT) images of the thorax and abdomen for cupping and truncation artefacts to reconstruct the 3D-delivered dose distribution for treatment evaluation. MATERIALS AND METHODS: MVCBCT scans of three phantoms, three lung and two rectal cancer patients were acquired. The cone-beam projection images were iteratively corrected for cupping and truncation artefacts and the resulting primary transmission was used for cone-beam reconstruction. The reconstructed scans were merged into the planning CT scan (MVCBCT+). Dose distributions of clinical IMRT, stereotactic and conformal treatment plans were recalculated on the uncorrected and corrected MVCBCT+ scans using the treatment planning system and compared to the planned dose distribution. RESULTS: The dose distributions on the corrected MVCBCT+ of the phantoms were accurate for 99% of the voxels within 2% or 2mm. Using this method the errors in mean GTV dose reduced from about 10% to 1% for the patients. CONCLUSIONS: The method corrects cupping and truncation artefacts in cone-beam scans of the thorax and abdomen in addition to head-and-neck (demonstrated previously). The corrected scans can be used to calculate the influence of anatomical changes on the 3D-delivered dose distribution.


Asunto(s)
Abdomen/diagnóstico por imagen , Artefactos , Tomografía Computarizada de Haz Cónico , Neoplasias Pulmonares/radioterapia , Fantasmas de Imagen , Neoplasias del Recto/radioterapia , Tórax/diagnóstico por imagen , Algoritmos , Humanos , Dosificación Radioterapéutica , Resultado del Tratamiento , Ultrasonografía
2.
Med Phys ; 35(3): 849-65, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18404922

RESUMEN

Megavoltage cone-beam CT (MV CBCT) is used for three-dimensional imaging of the patient anatomy on the treatment table prior to or just after radiotherapy treatment. To use MV CBCT images for radiotherapy dose calculation purposes, reliable electron density (ED) distributions are needed. Patient scatter, beam hardening and softening effects result in cupping artifacts in MV CBCT images and distort the CT number to ED conversion. A method based on transmission images is presented to correct for these effects without using prior knowledge of the object's geometry. The scatter distribution originating from the patient is calculated with pencil beam scatter kernels that are fitted based on transmission measurements. The radiological thickness is extracted from the scatter subtracted transmission images and is then converted to the primary transmission used in the cone-beam reconstruction. These corrections are performed in an iterative manner, without using prior knowledge regarding the geometry and composition of the object. The method was tested using various homogeneous and inhomogeneous phantoms with varying shapes and compositions, including a phantom with different electron density inserts, phantoms with large density variations, and an anthropomorphic head phantom. For all phantoms, the cupping artifact was substantially removed from the images and a linear relation between the CT number and electron density was found. After correction the deviations in reconstructed ED from the true values were reduced from up to 0.30 ED units to 0.03 for the majority of the phantoms; the residual difference is equal to the amount of noise in the images. The ED distributions were evaluated in terms of absolute dose calculation accuracy for homogeneous cylinders of different size; errors decreased from 7% to below 1% in the center of the objects for the uncorrected and corrected images, respectively, and maximum differences were reduced from 17% to 2%, respectively. The presented method corrects the MV CBCT images for cupping artifacts and extracts reliable ED information of objects with varying geometries and composition, making these corrected MV CBCT images suitable for accurate dose calculation purposes.


Asunto(s)
Artefactos , Tomografía Computarizada de Haz Cónico/métodos , Electrones , Planificación de la Radioterapia Asistida por Computador/métodos , Calibración , Fantasmas de Imagen , Dosificación Radioterapéutica , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA