Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Brain Mapp ; 43(1): 352-372, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34498337

RESUMEN

Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.


Asunto(s)
Amígdala del Cerebelo/patología , Cuerpo Estriado/patología , Hipocampo/patología , Neuroimagen , Esquizofrenia/patología , Tálamo/patología , Amígdala del Cerebelo/diagnóstico por imagen , Cuerpo Estriado/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Humanos , Estudios Multicéntricos como Asunto , Esquizofrenia/diagnóstico por imagen , Tálamo/diagnóstico por imagen
2.
JAMA Psychiatry ; 72(9): 882-91, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26267151

RESUMEN

IMPORTANCE: Severe neuropsychiatric conditions, such as schizophrenia, affect distributed neural computations. One candidate system profoundly altered in chronic schizophrenia involves the thalamocortical networks. It is widely acknowledged that schizophrenia is a neurodevelopmental disorder that likely affects the brain before onset of clinical symptoms. However, no investigation has tested whether thalamocortical connectivity is altered in individuals at risk for psychosis or whether this pattern is more severe in individuals who later develop full-blown illness. OBJECTIVES: To determine whether baseline thalamocortical connectivity differs between individuals at clinical high risk for psychosis and healthy controls, whether this pattern is more severe in those who later convert to full-blown illness, and whether magnitude of thalamocortical dysconnectivity is associated with baseline prodromal symptom severity. DESIGN, SETTING, AND PARTICIPANTS: In this multicenter, 2-year follow-up, case-control study, we examined 397 participants aged 12-35 years of age (243 individuals at clinical high risk of psychosis, of whom 21 converted to full-blown illness, and 154 healthy controls). The baseline scan dates were January 15, 2010, to April 30, 2012. MAIN OUTCOMES AND MEASURES: Whole-brain thalamic functional connectivity maps were generated using individuals' anatomically defined thalamic seeds, measured using resting-state functional connectivity magnetic resonance imaging. RESULTS: Using baseline magnetic resonance images, we identified thalamocortical dysconnectivity in the 243 individuals at clinical high risk for psychosis, which was particularly pronounced in the 21 participants who converted to full-blown illness. The pattern involved widespread hypoconnectivity between the thalamus and prefrontal and cerebellar areas, which was more prominent in those who converted to full-blown illness (t(173) = 3.77, P < .001, Hedge g = 0.88). Conversely, there was marked thalamic hyperconnectivity with sensory motor areas, again most pronounced in those who converted to full-blown illness (t(173) = 2.85, P < .001, Hedge g = 0.66). Both patterns were significantly correlated with concurrent prodromal symptom severity (r = 0.27, P < 3.6 × 10(-8), Spearman ρ = 0.27, P < 4.75 × 10(-5), 2-tailed). CONCLUSIONS AND RELEVANCE: Thalamic dysconnectivity, resembling that seen in schizophrenia, was evident in individuals at clinical high risk for psychosis and more prominently in those who later converted to psychosis. Dysconnectivity correlated with symptom severity, supporting the idea that thalamic connectivity may have prognostic implications for risk of conversion to full-blown illness.


Asunto(s)
Cerebelo/fisiopatología , Corteza Cerebral/fisiopatología , Síntomas Prodrómicos , Trastornos Psicóticos/fisiopatología , Esquizofrenia/fisiopatología , Tálamo/fisiopatología , Adolescente , Adulto , Mapeo Encefálico , Estudios de Casos y Controles , Niño , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiopatología , Riesgo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA