Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Sport Nutr Exerc Metab ; 34(1): 38-47, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37883634

RESUMEN

This study assessed the effect of combined jump training and collagen supplementation on bone mineral density (BMD) in elite road-race cyclists. In this open-label, randomized study with two parallel groups, 36 young (21 ± 3 years) male (n = 8) and female (n = 28) elite road-race cyclists were allocated to either an intervention (INT: n = 18) or a no-treatment control (CON: n = 18) group. The 18-week intervention period, conducted during the off-season, comprised five 5-min bouts of jumping exercise per week, with each bout preceded by the ingestion of 15 g hydrolyzed collagen. Before and after the intervention, BMD of various skeletal sites and trabecular bone score of the lumbar spine were assessed by dual-energy X-ray absorptiometry, along with serum bone turnover markers procollagen Type I N propeptide and carboxy-terminal cross-linking telopeptide of Type I collagen. BMD of the femoral neck decreased in CON (from 0.789 ± 0.104 to 0.774 ± 0.095 g/cm2), while being preserved in INT (from 0.803 ± 0.058 to 0.809 ± 0.066 g/cm2; Time × Treatment, p < .01). No differences between treatments were observed for changes in BMD at the total hip, lumbar spine, and whole body (Time × Treatment, p > .05 for all). Trabecular bone score increased from 1.38 ± 0.08 to 1.40 ± 0.09 in CON and from 1.46 ± 0.08 to 1.47 ± 0.08 in INT, respectively (time effect: p < .01), with no differences between treatments (Time × Treatment: p = .33). Serum procollagen Type I N propeptide concentrations decreased to a similar extent in CON (83.6 ± 24.8 to 71.4 ± 23.1 ng/ml) and INT (82.8 ± 30.7 to 66.3 ± 30.6; time effect, p < .001; Time × Treatment, p = .22). Serum carboxy-terminal cross-linking telopeptide of Type I collagen concentrations did not change over time, with no differences between treatments (time effect, p = .08; Time × Treatment, p = .58). In conclusion, frequent short bouts of jumping exercise combined with collagen supplementation beneficially affects femoral neck BMD in elite road-race cyclists.


Asunto(s)
Densidad Ósea , Colágeno Tipo I , Humanos , Masculino , Femenino , Colágeno Tipo I/farmacología , Colágeno , Absorciometría de Fotón , Suplementos Dietéticos , Biomarcadores
2.
J Nutr ; 153(6): 1718-1729, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37277162

RESUMEN

BACKGROUND: Muscle mass and strength decrease during short periods of immobilization and slowly recover during remobilization. Recent artificial intelligence applications have identified peptides that appear to possess anabolic properties in in vitro assays and murine models. OBJECTIVES: This study aimed to compare the impact of Vicia faba peptide network compared with milk protein supplementation on muscle mass and strength loss during limb immobilization and regain during remobilization. METHODS: Thirty young (24 ± 5 y) men were subjected to 7 d of one-legged knee immobilization followed by 14 d of ambulant recovery. Participants were randomly allocated to ingest either 10 g of the Vicia faba peptide network (NPN_1; n = 15) or an isonitrogenous control (milk protein concentrate; MPC; n = 15) twice daily throughout the study. Single-slice computed tomography scans were performed to assess quadriceps cross-sectional area (CSA). Deuterium oxide ingestion and muscle biopsy sampling were applied to measure myofibrillar protein synthesis rates. RESULTS: Leg immobilization decreased quadriceps CSA (primary outcome) from 81.9 ± 10.6 to 76.5 ± 9.2 cm2 and from 74.8 ± 10.6 to 71.5 ± 9.8 cm2 in the NPN_1 and MPC groups, respectively (P < 0.001). Remobilization partially recovered quadriceps CSA (77.3 ± 9.3 and 72.6 ± 10.0 cm2, respectively; P = 0.009), with no differences between the groups (P > 0.05). During immobilization, myofibrillar protein synthesis rates (secondary outcome) were lower in the immobilized leg (1.07% ± 0.24% and 1.10% ± 0.24%/d, respectively) than in the non-immobilized leg (1.55% ± 0.27% and 1.52% ± 0.20%/d, respectively; P < 0.001), with no differences between the groups (P > 0.05). During remobilization, myofibrillar protein synthesis rates in the immobilized leg were greater with NPN_1 than those with MPC (1.53% ± 0.38% vs. 1.23% ± 0.36%/d, respectively; P = 0.027). CONCLUSION: NPN_1 supplementation does not differ from milk protein in modulating the loss of muscle size during short-term immobilization and the regain during remobilization in young men. NPN_1 supplementation does not differ from milk protein supplementation in modulating the myofibrillar protein synthesis rates during immobilization but further increases myofibrillar protein synthesis rates during remobilization.


Asunto(s)
Vicia faba , Masculino , Humanos , Animales , Ratones , Vicia faba/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Proteínas de la Leche/farmacología , Proteínas de la Leche/metabolismo , Inteligencia Artificial , Fuerza Muscular , Inmovilización/métodos , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/patología , Suplementos Dietéticos , Péptidos/metabolismo , Músculo Esquelético/metabolismo
3.
Int J Sport Nutr Exerc Metab ; 33(5): 247-254, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348850

RESUMEN

Dietary protein digestion and amino acid absorption rates are modulated by numerous factors such as the food matrix. It has been speculated that protein ingested in liquid form is more rapidly digested and absorbed when compared with ingestion in solid form. Here, we assessed the postprandial plasma amino acid availability following ingestion of a single bolus of protein provided in either liquid or solid form. Twelve healthy, young females were included in this randomized cross-over study. On two separate test days, participants ingested 20-g milk protein concentrate in solid form (protein bar) or in liquid form (protein drink). Products were composed of matched ingredients and, thereby, had the same macro- and micronutrient composition. On both test days, arterialized blood samples were collected at regular time intervals for up to 4 hr following protein ingestion to assess the postprandial rise in plasma amino acid concentrations. Protein ingestion robustly elevated circulating plasma amino acid concentrations (p < .001), with no significant differences between treatments (p = .088). The incremental area under the curve of the postprandial rise in total plasma amino acid concentrations did not differ following bar versus drink consumption (160 ± 73 vs. 160 ± 71 mmol·L-1·240 min-1, respectively; 95% confidence interval [-37, 37]; Cohen's dz = 0.003; p = .992). Ingestion of protein in liquid or solid form does not modulate postprandial amino acid availability in healthy, female adults. Any differences in protein digestion and amino acid absorption due to differences in food matrix are not attributed to the protein being consumed as a bar or as a drink.


Asunto(s)
Proteínas de la Leche , Proteínas Musculares , Humanos , Adulto , Femenino , Proteínas Musculares/metabolismo , Aminoácidos , Proteínas en la Dieta , Ingestión de Alimentos , Periodo Posprandial/fisiología
4.
J Physiol ; 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37293995

RESUMEN

Skeletal muscle disuse reduces muscle protein synthesis rates and induces atrophy, events associated with decreased mitochondrial respiration and increased reactive oxygen species. Given that dietary nitrate can improve mitochondrial bioenergetics, we examined whether nitrate supplementation attenuates disuse-induced impairments in mitochondrial function and muscle protein synthesis rates. Female C57Bl/6N mice were subjected to single-limb casting (3 or 7 days) and consumed drinking water with or without 1 mM sodium nitrate. Compared with the contralateral control limb, 3 days of immobilization lowered myofibrillar fractional synthesis rates (FSR, P < 0.0001), resulting in muscle atrophy. Although FSR and mitophagy-related proteins were higher in subsarcolemmal (SS) compared with intermyofibrillar (IMF) mitochondria, immobilization for 3 days decreased FSR in both SS (P = 0.009) and IMF (P = 0.031) mitochondria. Additionally, 3 days of immobilization reduced maximal mitochondrial respiration, decreased mitochondrial protein content, and increased maximal mitochondrial reactive oxygen species emission, without altering mitophagy-related proteins in muscle homogenate or isolated mitochondria (SS and IMF). Although nitrate consumption did not attenuate the decline in muscle mass or myofibrillar FSR, intriguingly, nitrate completely prevented immobilization-induced reductions in SS and IMF mitochondrial FSR. In addition, nitrate prevented alterations in mitochondrial content and bioenergetics after both 3 and 7 days of immobilization. However, in contrast to 3 days of immobilization, nitrate did not prevent the decline in SS and IMF mitochondrial FSR after 7 days of immobilization. Therefore, although nitrate supplementation was not sufficient to prevent muscle atrophy, nitrate may represent a promising therapeutic strategy to maintain mitochondrial bioenergetics and transiently preserve mitochondrial protein synthesis rates during short-term muscle disuse. KEY POINTS: Alterations in mitochondrial bioenergetics (decreased respiration and increased reactive oxygen species) are thought to contribute to muscle atrophy and reduced protein synthesis rates during muscle disuse. Given that dietary nitrate can improve mitochondrial bioenergetics, we examined whether nitrate supplementation could attenuate immobilization-induced skeletal muscle impairments in female mice. Dietary nitrate prevented short-term (3 day) immobilization-induced declines in mitochondrial protein synthesis rates, reductions in markers of mitochondrial content, and alterations in mitochondrial bioenergetics. Despite these benefits and the preservation of mitochondrial content and bioenergetics during more prolonged (7 day) immobilization, nitrate consumption did not preserve skeletal muscle mass or myofibrillar protein synthesis rates. Overall, although dietary nitrate did not prevent atrophy, nitrate supplementation represents a promising nutritional approach to preserve mitochondrial function during muscle disuse.

5.
Int J Sport Nutr Exerc Metab ; 33(4): 181-188, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37185454

RESUMEN

Acute ketone monoester (KE) supplementation can alter exercise responses, but the performance effect is unclear. The limited and equivocal data to date are likely related to factors including the KE dose, test conditions, and caliber of athletes studied. We tested the hypothesis that mean power output during a 20-min cycling time trial (TT) would be different after KE ingestion compared to a placebo (PL). A sample size of 22 was estimated to provide 80% power to detect an effect size dz of 0.63 at an alpha level of .05 with a two-tailed paired t test. This determination considered 2.0% as the minimal important difference in performance. Twenty-three trained cyclists (N = 23; peak oxygen uptake: 65 ± 12 ml·kg-1 min-1; M ± SD), who were regularly cycling >5 hr/week, completed a familiarization trial followed by two experimental trials. Participants self-selected and replicated their diet and exercise for ∼24 hr before each trial. Participants ingested either 0.35 g/kg body mass of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate KE or a flavor-matched PL 30 min before exercise in a randomized, triple-blind, crossover manner. Exercise involved a 15-min warm-up followed by the 20-min TT on a cycle ergometer. The only feedback provided was time elapsed. Preexercise venous [ß-hydroxybutyrate] was higher after KE versus PL (2.0 ± 0.6 vs. 0.2 ± 0.1 mM, p < .0001). Mean TT power output was 2.4% (0.6% to 4.1%; mean [95% confidence interval]) lower after KE versus PL (255 ± 54 vs. 261 ± 54 W, p < .01; dz = 0.60). The mechanistic basis for the impaired TT performance after KE ingestion under the present study conditions remains to be determined.


Asunto(s)
Rendimiento Atlético , Cetonas , Humanos , Estudios Cruzados , Ejercicio Físico , Suplementos Dietéticos , Ciclismo/fisiología , Método Doble Ciego , Rendimiento Atlético/fisiología
6.
Bone ; 170: 116705, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36804484

RESUMEN

INTRODUCTION: We assessed whether collagen supplementation augments the effects of high-impact exercise on bone turnover and whether a higher exercise frequency results in a greater benefit for bone metabolism. METHODS: In this randomized, cross-over trial, 14 healthy males (age 24 ± 4 y, BMI 22.0 ± 2.1 kg/m2) performed 5-min of high-impact exercise once (JUMP+PLA and JUMP+COL) or twice daily (JUMP2+COL2) during a 3-day intervention period, separated by a 10-day wash out period. One hour before every exercise bout participants ingested 20 g hydrolysed collagen (JUMP+COL and JUMP2+COL2) or a placebo control (JUMP+PLA). Blood markers of bone formation (P1NP) and resorption (CTXI) were assessed in the fasted state before the ingestion of the initial test drinks and 24, 48, and 72 h thereafter. In JUMP+PLA and JUMP+COL, additional blood samples were collected in the postprandial state at 1, 2, 3, 4, 5 and 13 h after ingestion of the test drink. RESULTS: In the postprandial state, serum P1NP concentrations decreased marginally from 99 ± 37 to 93 ± 33 ng/mL in JUMP+COL, and from 97 ± 32 to 92 ± 31 ng/mL in JUMP+PLA, with P1NP levels having returned to baseline levels after 13 h (time-effect, P = 0.053). No differences in serum P1NP concentrations were observed between JUMP+PLA and JUMP+COL (time x treatment, P = 0.58). Serum CTX-I concentrations showed a ~ 50 % decline (time, P < 0.001) in the postprandial state in JUMP+COL (0.9 ± 0.3 to 0.4 ± 0.2 ng/mL) and JUMP+PLA (0.9 ± 0.3 to 0.4 ± 0.2 ng/mL), with no differences between treatments (time x treatment, P = 0.17). Fasted serum P1NP concentrations increased ~8 % by daily jumping exercise (time-effect, P < 0.01), with no differences between treatments (time x treatment, P = 0.71). Fasted serum CTX-I concentrations did not change over time (time-effect, P = 0.41) and did not differ between treatments (time x treatment, P = 0.58). CONCLUSIONS: Five minutes of high-impact exercise performed daily stimulates bone formation during a 3-day intervention period. This was indicated by an increase in fasted serum P1NP concentrations, rather than an acute increase in post-exercise serum P1NP concentrations. Collagen supplementation or an increase in exercise frequency does not further increase serum P1NP concentrations. The bone resorption marker CTX-I was not affected by daily short-duration high-impact exercise with or without concurrent collagen supplementation.


Asunto(s)
Remodelación Ósea , Colágeno Tipo I , Masculino , Humanos , Adulto Joven , Adulto , Estudios Cruzados , Biomarcadores/metabolismo , Colágeno , Procolágeno , Suplementos Dietéticos , Poliésteres/farmacología , Fragmentos de Péptidos
7.
Med Sci Sports Exerc ; 55(4): 614-624, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36534950

RESUMEN

PURPOSE: This study aimed to assess the effects of 20 wk resistance exercise training with or without protein supplementation on body composition, muscle mass, muscle strength, physical performance, and aerobic capacity in prostate cancer patients receiving androgen deprivation therapy (ADT). METHODS: Sixty prostate cancer patients receiving ADT were randomly assigned to perform 20 wk of resistance exercise training with supplementation of 31 g whey protein (EX + PRO, n = 30) or placebo (EX + PLA, n = 30), consumed immediately after exercise and every night before sleep. A separate control group (CON, n = 36) only received usual care. At baseline and after 20 wk, body composition (dual-energy x-ray absorptiometry), muscle mass (computed tomography scan), muscle strength (1-repetition maximum strength tests), physical performance (Timed Up and Go Test, 30-Second Chair Stand Test, and Stair Climb Test), aerobic capacity (cardiopulmonary exercise test), and habitual dietary intake (food diary) were assessed. Data were analyzed using a two-factor repeated-measures ANOVA. RESULTS: Over time, muscle mass and strength increased in EX + PRO and EX + PLA and decreased in CON. Total fat mass and fat percentage increased in EX + PRO and CON, but not in EX + PLA. Physical performance did not significantly change over time in either group. Aerobic capacity was maintained in EX + PLA, but it decreased in EX + PRO and CON. Habitual protein intake (without supplements) averaged >1.0 g·kg body weight -1 ·d -1 , with no differences over time or between groups. CONCLUSIONS: In prostate cancer patients, resistance exercise training counteracts the adverse effects of ADT on body composition, muscle mass, muscle strength, and aerobic capacity, with no additional benefits of protein supplementation.


Asunto(s)
Neoplasias de la Próstata , Entrenamiento de Fuerza , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/inducido químicamente , Antagonistas de Andrógenos/efectos adversos , Andrógenos/farmacología , Andrógenos/uso terapéutico , Equilibrio Postural , Estudios de Tiempo y Movimiento , Suplementos Dietéticos , Fuerza Muscular/fisiología , Composición Corporal , Músculos , Poliésteres/farmacología , Terapia por Ejercicio
8.
Am J Physiol Endocrinol Metab ; 323(2): E171-E184, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35732003

RESUMEN

Rapid oscillations in cytosolic calcium (Ca2+) coordinate muscle contraction, relaxation, and physical movement. Intriguingly, dietary nitrate decreases ATP cost of contraction, increases force production, and increases cytosolic Ca2+, which would seemingly necessitate a greater demand for sarcoplasmic reticulum Ca2+ ATPase (SERCA) to sequester Ca2+ within the sarcoplasmic reticulum (SR) during relaxation. As SERCA is highly regulated, we aimed to determine the effect of 7-day nitrate supplementation (1 mM via drinking water) on SERCA enzymatic properties and the functional interaction between SERCA and mitochondrial oxidative phosphorylation. In soleus, we report that dietary nitrate increased force production across all stimulation frequencies tested, and throughout a 25 min fatigue protocol. Mice supplemented with nitrate also displayed an ∼25% increase in submaximal SERCA activity and SERCA efficiency (P = 0.053) in the soleus. To examine a possible link between ATP consumption and production, we established a methodology coupling SERCA and mitochondria in permeabilized muscle fibers. The premise of this experiment is that the addition of Ca2+ in the presence of ATP generates ADP from SERCA to support mitochondrial respiration. Similar to submaximal SERCA activity, mitochondrial respiration supported by SERCA-derived ADP was increased by ∼20% following nitrate in red gastrocnemius. This effect was fully attenuated by the SERCA inhibitor cyclopiazonic acid and was not attributed to differences in mitochondrial oxidative capacity, ADP sensitivity, protein content, or reactive oxygen species emission. Overall, these findings suggest that improvements in submaximal SERCA kinetics may contribute to the effects of nitrate on force production during fatigue.NEW & NOTEWORTHY We show that nitrate supplementation increased force production during fatigue and increased submaximal SERCA activity. This was also evident regarding the high-energy phosphate transfer from SERCA to mitochondria, as nitrate increased mitochondrial respiration supported by SERCA-derived ADP. Surprisingly, these observations were only apparent in muscle primarily expressing type I (soleus) but not type II fibers (EDL). These findings suggest that alterations in SERCA properties are a possible mechanism in which nitrate increases force during fatiguing contractions.


Asunto(s)
Contracción Muscular , Nitratos , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Calcio/metabolismo , Fatiga/metabolismo , Femenino , Ratones , Mitocondrias/metabolismo , Contracción Muscular/fisiología , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/metabolismo , Nitratos/metabolismo , Nitratos/farmacología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
9.
Med Sci Sports Exerc ; 54(9): 1572-1581, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35438672

RESUMEN

INTRODUCTION: Plant-derived proteins have received considerable attention as an alternative to animal-based proteins and are now frequently used in both plant-based diets and sports nutrition products. However, little information is available on the anabolic properties of potato-derived protein. This study compares muscle protein synthesis rates after the ingestion of 30 g potato protein versus 30 g milk protein at rest and during recovery from a single bout of resistance exercise in healthy, young males. METHODS: In a randomized, double-blind, parallel-group design, 24 healthy young males (24 ± 4 yr) received primed continuous l -[ ring - 13 C 6 ]-phenylalanine infusions while ingesting 30 g potato-derived protein or 30 g milk protein after a single bout of unilateral resistance exercise. Blood and muscle biopsies were collected for 5 h after protein ingestion to assess postprandial plasma amino acid profiles and mixed muscle protein synthesis rates at rest and during recovery from exercise. RESULTS: Ingestion of both potato and milk protein increased mixed muscle protein synthesis rates when compared with basal postabsorptive values (from 0.020% ± 0.011% to 0.053% ± 0.017%·h -1 and from 0.021% ± 0.014% to 0.050% ± 0.012%·h -1 , respectively; P < 0.001), with no differences between treatments ( P = 0.54). In the exercised leg, mixed muscle protein synthesis rates increased to 0.069% ± 0.019% and 0.064% ± 0.015%·h -1 after ingesting potato and milk protein, respectively ( P < 0.001), with no differences between treatments ( P = 0.52). The muscle protein synthetic response was greater in the exercised compared with the resting leg ( P < 0.05). CONCLUSIONS: Ingestion of 30 g potato protein concentrate increases muscle protein synthesis rates at rest and during recovery from exercise in healthy, young males. Muscle protein synthesis rates after the ingestion of 30 g potato protein do not differ from rates observed after ingesting an equivalent amount of milk protein.


Asunto(s)
Proteínas en la Dieta , Proteínas Musculares , Solanum tuberosum , Adulto , Proteínas en la Dieta/metabolismo , Método Doble Ciego , Ingestión de Alimentos , Humanos , Masculino , Proteínas de la Leche , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza , Solanum tuberosum/metabolismo , Adulto Joven
10.
Bone ; 154: 116233, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34666201

RESUMEN

BACKGROUND: Magnesium plays a key role in bone health and may, therefore, represent an interesting nutrient for the prevention of bone loss and osteoporosis. The aim of this systematic review and meta-analysis was to investigate the impact of magnesium intake from any source on bone mineral density (BMD), bone mineral content (BMC), bone turnover markers, and fracture risk in older adults. METHODS: A systematic search was conducted using Embase, Medline Ovid and Cochrane Central from database inception to October 2020. All studies that related magnesium intake with bone health outcomes among adults aged ≥60 years were included. Two investigators independently conducted abstract and full-text screenings, data extractions, and risk of bias assessments. Authors were contacted for missing data. RESULTS: Once 787 records were screened, six cohort studies, one case-control study and five cross-sectional studies were included. Qualitative evaluation demonstrated a positive trend between higher magnesium intake and higher hip and femoral neck BMD. Meta-analysis of four studies showed a significant positive association between magnesium intake and hip BMD (pooled beta: 0.03, 95% CI: 0.01-0.06, p < 0.05). CONCLUSIONS: This systematic review indicates that a higher magnesium intake may support an increase in hip and femoral neck BMD. Due to limited research no associations with BMD at other sites or fractures were found. There is a need for properly designed cohort studies to determine the association between magnesium intake and bone health in older adults. Next, large and long-term randomized controlled trials in older adults are needed to determine whether an increase in magnesium (supplementation) intake can improve bone health. The combination of several bone nutrients (calcium, vitamin D, protein, magnesium and potentially more) may be needed for the most optimal effect on bone health and to delay or prevent the development of osteoporosis.


Asunto(s)
Magnesio , Osteoporosis , Anciano , Densidad Ósea , Estudios de Casos y Controles , Estudios Transversales , Humanos , Persona de Mediana Edad , Osteoporosis/prevención & control
11.
Curr Rheumatol Rep ; 23(11): 78, 2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34716494

RESUMEN

PURPOSE OF REVIEW: Osteoarthritis (OA) is the most common forms of arthritis in the general population, accounting for more pain and functional disability than any other musculoskeletal disease. There are currently no approved disease modifying drugs for OA. In the absence of effective pharmacotherapy, many patients with OA turn to nutritional supplements and nutraceuticals, including collagen derivatives. Collagen hydrolyzates and ultrahydrolyzates are terms used to describe collagens that have been broken down into small peptides and amino acids in the presence of collagenases and high pressure. RECENT FINDINGS: This article reviews the relevant literature and serves as a White Paper on collagen hydrolyzates and ultrahydrolyzates as emerging supplements often advertised to support joint health in OA. Collagen hydrolyzates have demonstrated some evidence of efficacy in a handful of small scale clinical trials, but their ability to treat and reverse advanced joint disease remains highly speculative, as is the case for other nutritional supplements. The aim of this White Paper is to stimulate research and development of collagen-based supplements for patients with OA and other musculoskeletal diseases at academic and industrial levels. This White Paper does not make any treatment recommendations for OA patients in the clinical context, but simply aims to highlight opportunities for scientific innovation and interdisciplinary collaboration, which are crucial for the development of novel products and nutritional interventions based on the best available and published evidence.


Asunto(s)
Artropatías , Osteoartritis , Colágeno , Suplementos Dietéticos , Humanos , Osteoartritis/tratamiento farmacológico , Dolor
12.
Am J Clin Nutr ; 114(6): 2074-2083, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34510176

RESUMEN

BACKGROUND: Patients with end-stage renal disease (ESRD) undergoing hemodialysis experience a rapid decline in skeletal muscle mass and strength. Hemodialysis removes amino acids (AAs) from the circulation, thereby lowering plasma AA concentrations and stimulating proteolysis. OBJECTIVES: In the present study, we evaluate the impact of intradialytic protein ingestion at rest and following exercise on AA removal and plasma AA availability in patients with ESRD. METHODS: Ten patients (age: 65 ± 16 y, male/female: 8/2, BMI: 24.2 ± 4.8 kg/m2, serum albumin: 3.4 ± 0.3 g/dL) with ESRD undergoing hemodialysis participated in this randomized controlled crossover trial. During 4 hemodialysis sessions, patients were assigned to ingest 40 g protein or a placebo 60 min after initiation, both at rest (PRO and PLA, respectively) and following exercise (PRO + EX and PLA + EX, respectively). Spent dialysate and blood samples were collected every 30 min throughout hemodialysis to assess AA removal and plasma AA availability. RESULTS: Plasma AA concentrations declined by 26.1 ± 4.5% within 30 min after hemodialysis initiation during all interventions (P < 0.001, η2p > 0.79). Protein ingestion, but not intradialytic exercise, increased AA removal throughout hemodialysis (9.8 ± 2.0, 10.2 ± 1.6, 16.7 ± 2.2, and 17.3 ± 2.3 g during PLA, PLA + EX, PRO, and PRO + EX interventions, respectively; protein effect P < 0.001, η2p = 0.97; exercise effect P = 0.32, η2p = 0.11). Protein ingestion increased plasma AA concentrations until the end of hemodialysis, whereas placebo ingestion resulted in decreased plasma AA concentrations (time effect P < 0.001, η2p > 0.84). Plasma AA availability (incremental AUC) was greater during PRO and PRO + EX interventions (49 ± 87 and 70 ± 34 mmol/L/240 min, respectively) compared with PLA and PLA + EX interventions (-227 ± 54 and -208 ± 68 mmol/L/240 min, respectively; protein effect P < 0.001, η2p = 0.98; exercise effect P = 0.21, η2p = 0.16). CONCLUSIONS: Protein ingestion during hemodialysis compensates for AA removal and increases plasma AA availability both at rest and during recovery from intradialytic exercise. Intradialytic exercise does not compromise AA removal or reduce plasma AA availability during hemodialysis in a postabsorptive or postprandial state.


Asunto(s)
Aminoácidos , Fallo Renal Crónico , Anciano , Anciano de 80 o más Años , Estudios Cruzados , Ingestión de Alimentos , Femenino , Humanos , Fallo Renal Crónico/terapia , Masculino , Persona de Mediana Edad , Poliésteres , Proteínas , Diálisis Renal
13.
J Sports Sci Med ; 20(2): 328-338, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34211326

RESUMEN

Sports nutrition supplements have previously been reported to contain undeclared doping substances. The use of such supplements can lead to general health risks and may give rise to unintentional doping violations in elite sports. To assess the prevalence of doping substances in a range of high-risk sports nutrition supplements available from Dutch web shops. A total of 66 sports nutrition supplements - identified as potentially high-risk products claiming to modulate hormone regulation, stimulate muscle mass gain, increase fat loss, and/or boost energy - were selected from 21 different brands and purchased from 17 web shops. All products were analyzed for doping substances by the UK life sciences testing company LGC, formerly known as the Laboratory of the Government Chemist, using an extended version of their ISO17025 accredited nutritional supplement screen. A total of 25 out of the 66 products (38%) contained undeclared doping substances, which included high levels of the stimulants oxilofrine, ß-methylphenethylamine (BMPEA) and N,ß-dimethylphenethylamine (NBDMPEA), the stimulant 4-methylhexan-2-amine (methylhexaneamine, 1,3-dimethylamylamine, DMAA), the anabolic steroids boldione (1,4-androstadiene-3,17-dione) and 5-androstene-3ß,17α-diol (17α-AED), the beta-2 agonist higenamine and the beta-blocker bisoprolol. Based upon the recommended dose and the potential variability of analyte concentration, the ingestion of some products identified within this study could pose a significant risk of unintentional doping violations. In addition to inadvertent doping risks, the prescribed use of 3 products (4.5%) could likely impose general health risks.


Asunto(s)
Suplementos Dietéticos/análisis , Doping en los Deportes , Contaminación de Medicamentos , Agonistas Adrenérgicos beta/análisis , Antagonistas Adrenérgicos beta/análisis , Alcaloides/análisis , Anfetaminas/análisis , Androstadienos/análisis , Humanos , Prevalencia , Medición de Riesgo , Congéneres de la Testosterona/análisis , Tetrahidroisoquinolinas/análisis
14.
Geroscience ; 43(5): 2485-2495, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34283389

RESUMEN

Skeletal muscle mass losses with age are associated with negative health consequences, including an increased risk of developing metabolic disease and the loss of independence. Athletes adopt numerous nutritional strategies to maximize the benefits of exercise training and enhance recovery in pursuit of improving skeletal muscle quality, mass, or function. Importantly, many of the principles applied to enhance skeletal muscle health in athletes may be applicable to support active aging and prevent sarcopenia in the healthy (non-clinical) aging population. Here, we discuss the anabolic properties of protein supplementation in addition to ingredients that may enhance the anabolic effects of protein (e.g. omega 3 s, creatine, inorganic nitrate) in older persons. We conclude that nutritional strategies used in pursuit of performance enhancement in athletes are often applicable to improve skeletal muscle health in the healthy older population when implemented as part of a healthy active lifestyle. Further research is required to elucidate the mechanisms by which these nutrients may induce favourable changes in skeletal muscle and to determine the appropriate dosing and timing of nutrient intakes to support active aging.


Asunto(s)
Sarcopenia , Ciencias de la Nutrición y del Deporte , Anciano , Anciano de 80 o más Años , Envejecimiento , Atletas , Suplementos Dietéticos , Humanos , Sarcopenia/prevención & control
15.
Int J Sport Nutr Exerc Metab ; 31(5): 385-396, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34284348

RESUMEN

Previous studies have used supplements to increase dietary nitrate intake in clinical populations. Little is known about whether effects can also be induced through vegetable consumption. Therefore, the aim of this study was to assess the impact of dietary nitrate, through nitrate-rich vegetables (NRV) and beetroot juice (BRJ) supplementation, on plasma nitrate and nitrite concentrations, exercise tolerance, muscle oxygenation, and cardiovascular function in patients with peripheral arterial disease. In a randomized crossover design, 18 patients with peripheral arterial disease (age: 73 ± 8 years) followed a nitrate intake protocol (∼6.5 mmol) through the consumption of NRV, BRJ, and nitrate-depleted BRJ (placebo). Blood samples were taken, blood pressure and arterial stiffness were measured in fasted state and 150 min after intervention. Each intervention was followed by a maximal walking exercise test to determine claudication onset time and peak walking time. Gastrocnemius oxygenation was measured by near-infrared spectroscopy. Blood samples were taken and blood pressure was measured 10 min after exercise. Mean plasma nitrate and nitrite concentrations increased (nitrate; Time × Intervention interaction; p < .001), with the highest concentrations after BRJ (494 ± 110 µmol/L) compared with NRV (202 ± 89 µmol/L) and placebo (80 ± 19 µmol/L; p < .001). Mean claudication onset time and peak walking time did not differ between NRV (413 ± 187 s and 745 ± 220 s, respectively), BRJ (392 ± 154 s and 746 ± 176 s), and placebo (403 ± 176 s and 696 ± 222 s) (p = .762 and p = .165, respectively). Gastrocnemius oxygenation, blood pressure, and arterial stiffness were not affected by the intervention. NRV and BRJ intake markedly increase plasma nitrate and nitrite, but this does not translate to improved exercise tolerance, muscle oxygenation, and/or cardiovascular function.


Asunto(s)
Beta vulgaris , Enfermedad Arterial Periférica , Anciano , Anciano de 80 o más Años , Presión Sanguínea , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Tolerancia al Ejercicio , Jugos de Frutas y Vegetales , Humanos , Músculo Esquelético , Nitratos
16.
J Nutr ; 151(9): 2667-2679, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34236392

RESUMEN

BACKGROUND: Emerging evidence suggests that increasing dietary nitrate intake may be an effective approach to improve cardiovascular health. However, the effects of a prolonged elevation of nitrate intake through an increase in vegetable consumption are understudied. OBJECTIVE: Our primary aim was to determine the impact of 12 wk of increased daily consumption of nitrate-rich vegetables or nitrate supplementation on blood pressure (BP) in (pre)hypertensive middle-aged and older adults. METHODS: In a 12-wk randomized, controlled study (Nijmegen, The Netherlands), 77 (pre)hypertensive participants (BP: 144 ± 13/87 ± 7 mmHg, age: 65 ± 10 y) either received an intervention with personalized monitoring and feedback aiming to consume ∼250-300 g nitrate-rich vegetables/d (∼350-400 mg nitrate/d; n = 25), beetroot juice supplementation (400 mg nitrate/d; n = 26), or no intervention (control; n = 26). Before and after intervention, 24-h ambulatory BP was measured. Data were analyzed using repeated measures ANOVA (time × treatment), followed by within-group (paired t-test) and between-group analyses (1-factor ANOVA) where appropriate. RESULTS: The 24-h systolic BP (SBP) (primary outcome) changed significantly (P-interaction time × treatment = 0.017) with an increase in the control group (131 ± 8 compared with 135 ± 10 mmHg; P = 0.036); a strong tendency for a decline in the nitrate-rich vegetable group (129 ± 10 compared with 126 ± 9 mmHg; P = 0.051) which was different from control (P = 0.020); but no change in the beetroot juice group (133 ± 11 compared with 132 ± 12 mmHg; P = 0.56). A significant time × treatment interaction was also found for daytime SBP (secondary outcome, P = 0.011), with a significant decline in the nitrate-rich vegetable group (134 ± 10 compared with 129 ± 9 mmHg; P = 0.006) which was different from control (P = 0.010); but no changes in the beetroot juice (138 ± 12 compared with 137 ± 14 mmHg; P = 0.41) and control group (136 ± 10 compared with 137 ± 11 mmHg; P = 0.08). Diastolic BP (secondary outcome) did not change in any of the groups. CONCLUSIONS: A prolonged dietary intervention focusing on high-nitrate vegetable intake is an effective strategy to lower SBP in (pre)hypertensive middle-aged and older adults. This trial was registered at www.trialregister.nl as NL7814.


Asunto(s)
Beta vulgaris , Hipertensión , Anciano , Presión Sanguínea , Monitoreo Ambulatorio de la Presión Arterial , Suplementos Dietéticos , Humanos , Hipertensión/prevención & control , Persona de Mediana Edad , Nitratos , Nitritos , Verduras
17.
Am J Clin Nutr ; 113(6): 1411-1427, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33871558

RESUMEN

BACKGROUND: Leucine-enriched protein (LEU-PRO) and long-chain (LC) n-3 (ω-3) PUFAs have each been proposed to improve muscle mass and function in older adults, whereas their combination may be more effective than either alone. OBJECTIVE: The impact of LEU-PRO supplementation alone and combined with LC n-3 PUFAs on appendicular lean mass, strength, physical performance and myofibrillar protein synthesis (MyoPS) was investigated in older adults at risk of sarcopenia. METHODS: This 24-wk, 3-arm parallel, randomized, double-blind, placebo-controlled trial was conducted in 107 men and women aged ≥65 y with low muscle mass and/or strength. Twice daily, participants consumed a supplement containing either LEU-PRO (3 g leucine, 10 g protein; n = 38), LEU-PRO plus LC n-3 PUFAs (0.8 g EPA, 1.1 g DHA; LEU-PRO+n-3; n = 38), or an isoenergetic control (CON; n = 31). Appendicular lean mass, handgrip strength, leg strength, physical performance, and circulating metabolic and renal function markers were measured pre-, mid-, and postintervention. Integrated rates of MyoPS were assessed in a subcohort (n = 28). RESULTS: Neither LEU-PRO nor LEU-PRO+n-3 supplementation affected appendicular lean mass, handgrip strength, knee extension strength, physical performance or MyoPS. However, isometric knee flexion peak torque (treatment effect: -7.1 Nm; 95% CI: -12.5, -1.8 Nm; P < 0.01) was lower postsupplementation in LEU-PRO+n-3 compared with CON. Serum triacylglycerol and total adiponectin concentrations were lower, and HOMA-IR was higher, in LEU-PRO+n-3 compared with CON postsupplementation (all P < 0.05). Estimated glomerular filtration rate was higher and cystatin c was lower in LEU-PRO and LEU-PRO+n-3 postsupplementation compared with CON (all P < 0.05). CONCLUSIONS: Contrary to our hypothesis, we did not observe a beneficial effect of LEU-PRO supplementation alone or combined with LC n-3 PUFA supplementation on appendicular lean mass, strength, physical performance or MyoPS in older adults at risk of sarcopenia. This trial was registered at clinicaltrials.gov as NCT03429491.


Asunto(s)
Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/farmacología , Proteínas Musculares/metabolismo , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Rendimiento Físico Funcional , Anciano , Anciano de 80 o más Años , Envejecimiento , Biomarcadores , Composición Corporal , Método Doble Ciego , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Proteínas Musculares/genética , Estado Nutricional
18.
J Sports Sci ; 39(3): 322-331, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33012216

RESUMEN

The current double blind, randomized, placebo-controlled trial with two parallel groups aimed to assess the impact of whey protein supplementation on recovery of muscle function and muscle soreness following eccentric exercise. During a 9-day period, forty recreationally active males received twice daily supplementation with either whey protein (PRO; 60 g/day) or an iso-energetic amount of carbohydrate (CON). Muscle function and soreness were assessed before, and 0, 3, 24, 48, and 72 h after performing 100 drop jumps. Recovery of isometric maximal voluntary contraction (MVC) did not significantly differ between groups (timextreatment, P = 0.56). In contrast, the recovery of isokinetic MVC at 90°·s-1 was faster in CON as opposed to PRO (timextreatment interaction, P = 0.044). Recovery of isokinetic MVC at 180°·s-1 was also faster in CON as opposed to PRO (timextreatment interaction, P = 0.011). Recovery of countermovement jump performance did not differ between groups (timextreatment interaction, P = 0.52). Muscle soreness, CK and CRP showed a transient increase over time (P < 0.001), with no differences between groups. In conclusion, whey protein supplementation does not accelerate recovery of muscle function or attenuate muscle soreness and inflammation during 3 days of recovery from a single bout of eccentric exercise.


Asunto(s)
Suplementos Dietéticos , Ejercicio Físico/fisiología , Músculo Esquelético/lesiones , Músculo Esquelético/fisiología , Mialgia/prevención & control , Proteína de Suero de Leche/administración & dosificación , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , Creatina Quinasa/sangre , Carbohidratos de la Dieta/administración & dosificación , Método Doble Ciego , Humanos , Hidrocortisona/sangre , Inflamación/sangre , Rodilla/fisiología , Masculino , Contracción Muscular , Adulto Joven
19.
Eur J Sport Sci ; 21(6): 871-878, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32594854

RESUMEN

Purpose: Dietary nitrate has been shown to enhance muscle contractile function and has, therefore, been linked to increased muscle power and sprint exercise performance. However, the impact of dietary nitrate supplementation on maximal strength, performance and muscular endurance remains to be established. Methods: Fifteen recreationally active males (25 ± 4 y, BMI 24 ± 3 kg/m2) participated in a randomized double-blinded cross-over study comprising two 6-d supplementation periods; 140 mL/d nitrate-rich (BR; 985 mg/d) and nitrate-depleted (PLA; 0.37 mg/d) beetroot juice. Three hours following the last supplement, we assessed countermovement jump (CMJ) performance, maximal strength and power of the upper leg by voluntary isometric (30° and 60° angle) and isokinetic contractions (60, 120, 180 and 300°·s-1), and muscular endurance (total workload) by 30 reciprocal isokinetic voluntary contractions at 180°·s-1. Results: Despite differences in plasma nitrate (BR: 879 ± 239 vs. PLA: 33 ± 13 µmol/L, P < 0.001) and nitrite (BR: 463 ± 217 vs. PLA: 176 ± 50 nmol/L, P < 0.001) concentrations prior to exercise testing, CMJ height (BR: 39.3 ± 6.3 vs. PLA: 39.6 ± 6.3 cm; P = 0.39) and muscular endurance (BR: 3.93 ± 0.69 vs. PLA: 3.90 ± 0.66 kJ; P = 0.74) were not different between treatments. In line, isometric strength (P > 0.50 for both angles) and isokinetic knee extension power (P > 0.33 for all velocities) did not differ between treatments. Isokinetic knee flexion power was significantly higher following BR compared with PLA ingestion at 60°·s-1 (P = 0.001), but not at 120°·s-1 (P = 0.24), 180°·s-1 (P = 0.066), and 300°·s-1 (P = 0.36). Conclusion: Nitrate supplementation does not improve maximal strength, countermovement jump performance and muscular endurance in healthy, active males.


Asunto(s)
Beta vulgaris , Suplementos Dietéticos , Jugos de Frutas y Vegetales , Movimiento/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Adulto , Estudios Cruzados , Método Doble Ciego , Humanos , Contracción Isométrica/fisiología , Masculino , Nitratos/administración & dosificación , Nitratos/sangre , Nitritos/sangre , Resistencia Física/fisiología , Rendimiento Físico Funcional , Extremidad Superior/fisiología
20.
Nutrients ; 12(8)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751788

RESUMEN

Micellar casein is characterized as a slowly digestible protein source, and its structure can be modulated by various food processing techniques to modify its functional properties. However, little is known about the impact of such modifications on casein protein digestion and amino acid absorption kinetics and the subsequent post-prandial plasma amino acid responses. In the present study, we determined post-prandial aminoacidemia following ingestion of isonitrogenous amounts of casein protein (40 g) provided as micellar casein (Mi-CAS), calcium caseinate (Ca-CAS), or cross-linked sodium caseinate (XL-CAS). Fifteen healthy, young men (age: 26 ± 4 years, BMI: 23 ± 1 kg·m-2) participated in this randomized cross-over study and ingested 40 g Mi-Cas, Ca-CAS, and XL-CAS protein, with a ~1 week washout between treatments. On each trial day, arterialized blood samples were collected at regular intervals during a 6 h post-prandial period to assess plasma amino acid concentrations using ultra-performance liquid chromatography. Plasma amino acid concentrations were higher following the ingestion of XL-CAS when compared to Mi-CAS and Ca-CAS from t = 15 to 90 min (all p < 0.05). Plasma amino acid concentrations were higher following ingestion of Mi-CAS compared to Ca-CAS from t = 30 to 45 min (both p < 0.05). Plasma total amino acids iAUC were higher following the ingestion of XL-CAS when compared to Ca-CAS (294 ± 63 vs. 260 ± 75 mmol·L-1, p = 0.006), with intermediate values following Mi-CAS ingestion (270 ± 63 mmol·L-1, p > 0.05). In conclusion, cross-linked sodium caseinate is more rapidly digested when compared to micellar casein and calcium caseinate. Protein processing can strongly modulate the post-prandial rise in plasma amino acid bioavailability in vivo in humans.


Asunto(s)
Aminoácidos/sangre , Caseínas/farmacocinética , Proteínas en la Dieta/farmacocinética , Periodo Posprandial/efectos de los fármacos , Adulto , Área Bajo la Curva , Cromatografía Líquida de Alta Presión , Estudios Cruzados , Digestión/efectos de los fármacos , Ingestión de Alimentos , Absorción Gastrointestinal/efectos de los fármacos , Voluntarios Sanos , Humanos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA